目 次

1 照査結果一覧表	1
2 設計条件	2
2-1 設計条件	2
2-2 地盤条件	
2-3 杭基礎条件	2
3 杭基礎の地震時保有水平耐力照査	4
3-1 杭の諸元及び杭配置	4
3-2 荷重集計	5
3-2-1 橋軸方向の荷重集計	5
3-3 杭の軸方向の抵抗特性	9
3-3-1 押込み支持力及び引抜き抵抗力の上限値の計算	9
3-3-2 杭の軸方向ばね定数	16
3-4 杭の軸直角方向の抵抗特性	17
3-4-1 水平方向地盤反力係数	17
3-4-2 水平地盤反力度の上限値	20
3-5 M- φ 曲線	22
3-5-1 杭断面性能	22
3-5-2 杭体の曲げモーメント〜曲率関係	23
3-6 照査結果	24
3-6-1 橋軸方向(タイプⅡ・液状化地盤・浮力なし)	24

照査結果一覧表

(1) 橋軸方向

1) 不安定となる地盤の影響がある場合

荷重ケース		単位	タイプI + 浮力なし	タイプI + 浮力あり	タイプⅡ + 浮力なし	タイプⅡ + 浮力あり
照査方法		_	照査なし	照査なし	応答塑性率による	照査なし
設計水平震度	k_{he}	_			0. 56	
[[]] 八十辰反	k_{hA}	_			0. 56	
	M _{max} (*1)	kN·m/本				
	(M_y)	kN·m/本				
耐力	M _{max} (*2)	kN·m/本				
103/3	(M_y)	kN·m/本				
	P_N	kN/本				
	(P _{NU})	kN/本				
	k_{hyA}	_			0.41	
	状態	_			杭体降伏	
応答塑性率	μ Ar	_			1. 3915	
	(μ_{AL})	_			3. 0000	
	$\delta_{ m Ar}$	m			0. 0442	
	S	kN			14095. 61	
せん断力	(ΣS_{usd})	kN			16857. 92	
	(ΣS_{ucd})	kN			38259.60	
判別	È				OK	

(*1)最大曲げモーメント/降伏モーメントが最大になる(最も厳しい)杭列の値を表記しています。 (*2) 場小になる(最も余裕のある)杭列の値を表記しています。

2 設計条件

2-1 設計条件

(1) 構造物種類 橋台

(2) 適用基準 道路橋示方書(平成29年)

(3) 基礎工形式 場所打ち杭 ϕ 1200 (mm) L = 27.100 (m) n = 12 (本)

(4) 設計水平震度

	タイプ I	タイプⅡ	
地域区分	C地域		
地盤種別	I 種地盤		
地盤面における設計水平震度 (橋軸方向)	0.400	0. 560	

2-2 地盤条件

(1) 地盤標高および水位 標高記号: GL

計画地表面	面標高	(m)	0.000
ボーリンク	ブ上端標高	(m)	0.000
フーチンク	ブ下面標高	(m)	-2. 400
支持設定	地下水位標高	(m)	-2. 400

(2) 突出長

通常時(低減なし) 0.000 (m) タイプI低減時 0.000 (m) タイプI低減時 0.000 (m)

2-3 杭基礎条件

(1) 杭基礎条件

杭種場所打ち杭杭先端条件フリー施工方法場所打ち杭工法

(2) 杭断面諸元

杭長	27. 100	(m)
杭径	1200. 0	(mm)
杭の埋込み長	0. 100	(m)
ヤング係数	2.50×10^{4}	(N/mm^2)

コンクリートの呼び強度

呼び強度
設計基準強度30.0 (N/mm²)コンクリートが負担できる平均せん断応力度の基本値
コンクリートが負担できる最大のせん断力と等価なせん断応力度
コンクリートが負担できる平均せん断応力度の最大値0.350 (N/mm²)1.20 (N/mm²)3.20 (N/mm²)

主鉄筋

鉄筋の材質 SD345 降伏強度の特性値 345.0 (N/mm²)

主鉄筋データ

	かぶり	鉄筋径	本数	鉄筋量
	(mm)			(mm ²)
1層目	150.0	D32	28. 0	22237. 6

帯鉄筋

鉄筋の材質 SD345 降伏強度の特性値 345.0 (N/mm²) 帯鉄筋データ

鉄筋径	ピッチ	本数	鉄筋量
	(mm)		(mm ²)
D16	150.0	2.0	397. 2

横拘束鉄筋データ

断面積	ピッチ	有効長
(mm ²)	(mm)	(mm ²)
198.600	150.0	700.0

(3) ボーリングデータ

地盤反力係数の換算係数 α (地震の影響を含まない場合) 1 (地震の影響を含む場合) 2

	層厚	層上面標高	土質名	N値	γ	γ'	φ	С	Eo	周面摩擦力	低減係数DE
No	(m)	(m)			(kN/m^3)	(kN/m^3)	(度)	(kN/m^2)	(kN/m^2)		タイプⅡ
1	2.400	GL 0.000	砂質土	4.000	18.00	9.00	25. 0	0.00	11200.0	考慮する	低減無
2	3.000	GL -2.400	砂質土	4.000	18.00	9.00	25. 0	0.00	11200.0	考慮する	1/3
3	3.000	GL -5.400	砂質土	18.000	18.00	9.00	31. 0	0.00	50400.0	考慮する	2/3
4	1.000	GL -8.400	砂質土	7.000	18.00	9.00	25. 0	0.00	19600.0	考慮する	1/3
5	1.800	GL -9.400	砂質土	7.000	18.00	9.00	25. 0	0.00	19600.0	考慮する	低減無
6	7.000	GL -11. 200	砂質土	14.000	18.00	9.00	0.0	55.00	39200.0	考慮する	低減無
7	10.000	GL -18. 200	砂質土	12.000	18.00	9.00	29.0	0.00	33600.0	考慮する	低減無
8	3.000	GL -28. 200	砂質土	50.000	19.00	10.00	42.0	0.00	140000.0	考慮する	低減無

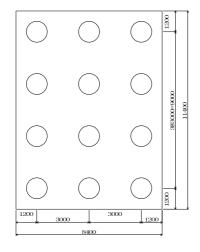
水平方向地盤反力係数 (K_H) 低減する 周面摩擦力度 (f_i) 低減する

3 杭基礎の地震時保有水平耐力照査

3-1 杭の諸元及び杭配置

(1) 杭の諸元

場所打ち杭 ϕ 1200.0 (mm) コンクリートの呼び強度 : 30.0 (N/mm²) コンクリートの設計基準強度 : $\sigma_{\rm ck}$ = 24.0 (N/mm²) 主鉄筋材質 : SD345 帯鉄筋材質 : SD345 かぶり 150.0 mm D32× 28.0本 As= 22237.6 (mm²)


配筋

杭 長 杭の埋込み長 L = 27.100 (m) $L_t = 0.100 (m)$

杭先端条件 施工方法 支持条件 フリー 場所打ち杭工法

支持杭

(2) 杭配置

3-2 荷重集計

3-2-1 橋軸方向の荷重集計

- (1) タイプⅡ・液状化地盤・浮力なし
 - 1) 主働土圧係数の計算

 $\phi_{\rm res} = 30^{\circ} \quad 0'$

 $\phi_{\text{peak}} = 45^{\circ} \quad 0'$

 $\theta = 0^{\circ} 0'$

 α = 0° 0′

以上の条件より地震時主働土圧係数は次式により算定する。

 $K_{A2} = 0.26 + 0.97 \cdot \gamma_{pEQ} \cdot \gamma_{qEQ} \cdot k_h = 0.26 + 0.97 \times 1.00 \times 1.00 \times 0.56 = 0.80320$

ここに、

 ϕ_{res} :土のせん断抵抗角の残留強度(度) ϕ_{peak} :土のせん断抵抗角のピーク強度(度) θ :土圧作用面と鉛直面とのなす角(度) α :地表面と水平面とのなす角(度)

kh : 地震時土圧の算出に用いる設計水平震度

γ_{pEQ} :地震の影響の荷重組合せ係数

γ_{qEQ} :地震の影響の荷重係数

2) 裏込め土砂による土圧

裏込め土砂の単位体積重量 $\gamma=19.00~(kN/m^3)$ 土圧作用面の壁面摩擦角 $\delta=15^\circ~0'$ 奥行き方向土圧作用幅 L=12.000~(m)

水平力

$$P_{\text{HEQ}} = \frac{1}{2} \cdot \gamma \cdot K_{\text{A2}} \cdot H_{\text{I}}^{2} \cdot \cos \delta \cdot L$$

$$= \frac{1}{2} \times 19.00 \times 0.80320 \times 8.000^{2} \times \cos(15^{\circ} \text{ O'}) \times 12.000$$

$$= 5660.47 \text{ (kN)}$$

作用高さ

$$Y_{EQ} = 2.667 \text{ (m)}$$

鉛直力

$$P_{\text{VEQ}} = \frac{1}{2} \cdot \gamma \cdot K_{\text{A2}} \cdot H_1^2 \cdot \sin \delta \cdot L$$

$$= \frac{1}{2} \times 19.00 \times 0.80320 \times 8.000^2 \times \sin(15^{\circ} \text{ 0'}) \times 12.000$$

$$= 1516.72 \text{ (kN)}$$

作用位置

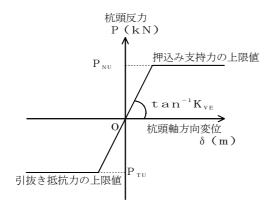
$$X_{EQ} = 8.500 \text{ (m)}$$

3) 荷重集計

a) 死荷重時

鉛直力
$$V_0 = \gamma_{pD} \cdot \gamma_{qD} \cdot (R_d + W_p + W_f + W_b + W_g) + \gamma_{pE} \cdot \gamma_{qE} \cdot P_{Va}$$
 $= 1.00 \times 1.05 \times (2500.000 + 2853.000 + 4845.000 + 6621.000 + 0.000)$ $+ 1.00 \times 1.05 \times 490.969$ $= 18175.468 \text{ (kN)}$ 水平力 $H_0 = \gamma_{pE} \cdot \gamma_{qE} \cdot P_{Ha}$ $= 1.00 \times 1.05 \times 1832.323$ $= 1923.939 \text{ (kN)}$ モーメント $M_0 = \gamma_{pD} \cdot \gamma_{qD} \cdot M_h + \gamma_{pE} \cdot \gamma_{qE} \cdot \{P_{Ha} \cdot y_a - P_{Va} \cdot (x_a - P_x)\}$ $= 1.00 \times 1.05 \times 0.000 + 1.00 \times 1.05 \times \{1832.323 \times 2.667 - 490.969 \times (8.500 - 4.200)\}$ $= 2914.418 \text{ (kN} \cdot m)$

b) 主働土圧増加分


鉛直土圧
$$\Delta P_{VEQ} = \gamma_{pE} \cdot \gamma_{qE} \cdot (P_{VEQ} - P_{Va})$$
 $= 1.00 \times 1.05 \times (1516.718 - 490.969)$ $= 1077.036 \text{ (kN)}$ 作用位置 $\Delta X_{EQ} = (P_{VEQ} \cdot X_{EQ} - P_{Va} \cdot x_a)/(P_{VEQ} - P_{Va})$ $= (1516.718 \times 8.500 - 490.969 \times 8.500)/(1516.718 - 490.969)$ $= 8.500 \text{ (m)}$ 水平土圧 $\Delta P_{HEQ} = \gamma_{pE} \cdot \gamma_{qE} \cdot (P_{HEQ} - P_{Ha})$ $= 1.00 \times 1.05 \times (5660.468 - 1832.323)$ $= 4019.552 \text{ (kN)}$ 作用高さ $\Delta Y_{EQ} = (P_{HEQ} \cdot Y_{EQ} - P_{Ha} \cdot y_a)/(P_{HEQ} - P_{Ha})$ $= (5660.468 \times 2.667 - 1832.323 \times 2.667)/(5660.468 - 1832.323)$ $= 2.667 \text{ (m)}$

c) 地震時

: 上部工反力 (kN): 橋台自重 (kN) W_{p} Y_{p} W_{f} ・ 個口日里 (M)・ 橋台自重の重心高さ (m)・ フーチング自重 (kN)・ フーチング自重の作用高さ (m) $\gamma_{\rm f}$ 上部構造重量(kN) 上部構造重量の作用高さ(m) W_u Y_u : 裏込め土重量 (kN) $W_{\rm b}$ $Y_{\rm b}$ 裏込め土重量の作用高さ (m) ・ 表込め工里重の作用高さ(m)
 ・ 上載土重量(kN)
 ・ 偏心モーメント(kN・m)
 ・ 橋台の設計に用いる上部工設計水平震度
 ・ 橋台基礎の照査に用いる設計水平震度
 ・ 荷重載が位置(フーチング前面より)(m) Wg M_h k_{he} k_{hA} 主働土圧鉛直成分(kN) 主働土圧水平成分(kN) \bar{P}_{Va} P_{Ha} : 主働士上水平成分 (kN) : 死荷重土圧の載荷作用位置(フーチング前面より) (m) : 死荷重土圧の載荷作用高さ(フーチング下面より) (m) : 地震動による主働土圧鉛直成分 (kN) : 地震動による主働土圧水平成分 (kN) : 地震時土圧の載荷作用位置(フーチング前面より) (m) : 地震時土圧の載荷作用高さ(フーチング下面より) (m) : 死荷重の荷重組合せ係数 Xa $y_{\rm a}$ P_{VEQ} P_{HEQ} χ_{EQ} Y_{EQ} 死荷重の荷重組合せ係数 γpD : 死荷重の荷重係数: 土圧の荷重組合せ係数 $\gamma_{
m qD}$ $\gamma_{
m pE}$: 土圧の荷重係数 $\gamma_{
m qE}$ γ_{pEQ} : 地震の影響の荷重組合せ係数 γ_{qEQ} : 地震の影響の荷重係数

3-3 杭の軸方向の抵抗特性

杭の軸方向の抵抗特性は以下のモデルで算出するものとする。

3-3-1 押込み支持力及び引抜き抵抗力の上限値の計算

(1) 計算式

押込み支持力の上限値PNU 及び引抜き抵抗力の上限値PTU は次式により算出するものとする。

$$\begin{array}{lll} P_{NU} &=& R_u \\ P_{TU} &=& P_u \ + \ W \end{array}$$

P_{NU}:押込み支持力の上限値(kN) PTU : 引抜き抵抗力の上限値 (kN)

Ru : 地盤から決まる杭の極限支持力の特性値 (kN) Pu : 地盤から決まる杭の極限引抜き抵抗力の特性値 (kN) W : 杭及び杭内部の土の有効重量 (kN)

地盤から決まる杭の極限支持力の特性値は以下の式により算出するものとする。

$$R_u = q_d \cdot A + U \cdot \Sigma (L_i \cdot f_i)$$

:地盤から決まる杭の極限支持力の特性値(kN) $R_{\rm u}$: 杭先端の極限支持力度の特性値(kN/m²)

 $q_{\rm d}$: 杭先端面積 (m²) A U : 杭の周長 (m)

: 周面摩擦力を考慮するi層の層厚 (m) Li

:周面摩擦力を考慮するi層の最大周面摩擦力度の特性値(kN/m²)

杭先端の極限支持力度の特性値(kN/m2)

7000m10120000000000000000000000000000000						
杭工法	地盤の種類	杭先端の極限支持力度の				
		特性値qd				
	粘性土	110 N (≦ 3,300)				
場所打ち杭工法	砂	110 N (≦ 3,300)				
	砂れき	160 N (≦ 8,000)				

ここに、N:標準貫入試験のN値

星十国面麻痺力庫の特性値 (LN/w2)

	取八月山亭深刀浸り村王恒(KIVIII)						
1	抗工法	地盤の種類	最大周面摩擦力度の				
			特性値fi				
場所	打ち杭工法	粘性土	c 又は 5 N (≦100)				
		砂質土	5 N (≦120)				

ここに、c:粘着力(kN/m²)、N:標準貫入試験のN値

注) N<5の軟弱粘性土層では、信頼性が乏しいので、N値による最大周面摩擦力度 を推定しない。

杭体から決まる押込み支持力の特性値は以下の式により算出するものとする。

$$R_{pu} = 0.85 \cdot \sigma_{ck} \cdot A_c + \sigma_y \cdot A_s$$

ここに、

R_{pu} : 杭体から決まる押込み支持力の特性値 (kN) σ_{ck}: コンクリートの設計基準強度 (kN/m²) A_c: コンクリートの断面積 (m²)

| σ_y : 鋼材の降伏強度の特性値 (kN/m²) | A_s : 鋼材の断面積 (m²)

地盤から決まる杭の極限引抜き抵抗力の特性値は以下の式により算出するものとする。

 $P_u = U \cdot \Sigma (L_i \cdot f_i)$

ここに、
Pu : 地盤から決まる杭の極限引抜き抵抗力の特性値(kN)
U : 杭の周長(m)
Li : 周面摩擦力を考慮するi層の層厚(m)
fi : 周面摩擦力を考慮するi層の最大周面摩擦力度の特性値(kN/m²)

杭体から決まる引抜き抵抗力の特性値は以下の式により算出するものとする。

 $P_{pu} = \sigma_y \cdot A_s$

ここに、 P_{pu} : 杭体から決まる引抜き抵抗力の特性値 (kN) σ_y : 鋼材の降伏強度の特性値 (kN/m^2) A_s : 鋼材の断面積 (m^2)

- (2) 地盤条件
 - 1) 低減なし
 - a)極限支持力計算時
 - ・周面摩擦力

層彩	標	古 (…)	土質	N値	fi	Li	Li•fi
層番号	保 ▽ GL	高 (m) +0,000	工貝	[c]	kN/m^2	m	kN/m
-+	∨ GL	+0.000					
1			砂質土				
	▽ GL	-2. 400					
2	(フーチ	ング下面)	砂質土	4. 000	20. 00	3, 000	60.00
	▽ GL	-5. 400	1	1,000			
3			砂質土	18, 000	90. 00	3, 000	270, 00
3	▽ GL	-8. 400	117貝上	10.000	90.00	3.000	270.00
			7小斤 1.	7 000	25 00	1 000	25.00
4	∇ GL	-9.400	砂質土	7. 000	35. 00	1.000	35. 00
_			工小原 1	F 000	05.00	1 000	60.00
5	∇ GL	-11. 200	砂質土	7. 000	35. 00	1.800	63. 00
			-1.55	14. 000			
6	▽ GL	-18. 200	砂質土	(55.00)	70. 00	7. 000	490.00
		ş	71551	10.000			
7	▽ GL	-28. 200	砂質土	12. 000	60. 00	10.000	600.00
	(考慮筆						
					Σ	Σ	1518.00

・杭先端の極限支持力度の特性値 qd

$$q_d = 110 \cdot N$$

= 110 × 50.000 = 5500.00 (>3300) (kN/m²)

b) 極限引抜き抵抗力計算時

・周面摩擦力

層番号	標	高 (m)	土質	N値	fi	Li	Li•fi
号	1	+0.000	上具	[c]	kN/m²	m	kN/m
	∨ GL	+0.000					
1			砂質土				
	▽ GL	-2. 400					
2	1	ング下面)	砂質土	4. 000	20.00	3. 000	60.00
	▽ GL	-5. 400					
3			砂質土	18, 000	90. 00	3, 000	270.00
	▽ GL	-8. 400	W M T	10.000	00.00	0.000	210.00
4			砂質土	7, 000	35, 00	1.000	35, 00
4	▽ GL	-9. 400	10月上	7.000	33.00	1.000	35.00
_			TLES I	5 000	05.00	1 000	20.00
5	▽ GL	-11. 200	砂質土	7. 000	35. 00	1.800	63.00
			-155.1	14. 000			
6	▽ GL	-18. 200	砂質土	(55.00)	70.00	7. 000	490.00
7		-28, 200	砂質土	12. 000	60.00	10.000	600.00
	▽ GL	-29. 400			120.00	1. 200	144.00
8		 先端)	砂質土	50.000			
	(176.)	ノL がm/			2	Σ	1662.00
	l						l

- 2) タイプⅡ低減時
- a)極限支持力計算時
- ・周面摩擦力

層番号	標	高 (m)	土質	N値 [c]	fi kN/m²	Li m	Li•fi kN/m
1	∇ GL	+0. 000	砂質土			<u> </u>	
2			砂質土	1. 333	6. 67	3.000	20.00
3	▽ GL	-8. 400	砂質土	12. 000	60.00	3.000	180.00
4	▽ GL	-9. 400	砂質土	2. 333	11. 67	1.000	11.67
5	▽ GL	-11. 200	砂質土	7. 000	35. 00	1.800	63. 00
6	∇ GL	-18. 200	砂質土	14. 000 (55. 00)	70.00	7. 000	490.00
7	∇ GL	-28. 200	砂質土	12. 000	60.00	10.000	600.00
	(考慮範	囲下端)			Σ	Σ	1364. 67

・杭先端の極限支持力度の特性値 qd

$$\begin{array}{l} q_d = 110 \cdot N \\ = 110 \, \times \, 50.\,000 \, = 5500.\,00 \, \, (>\!3300) \, \, \, (kN/m^2) \end{array}$$

b) 極限引抜き抵抗力計算時

・周面摩擦力

層番号	標	高 (m)	土質	N値	fi	Li	Li•fi
粤	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	+0.000	上具	[c]	kN/m²	m	kN/m
-	V OL	10.000					
1	▽ GL	-2.400	砂質土				
		-2.400 ング下面)					
2	\(\sigma \) \(\sigma \) GL		砂質土	1. 333	6. 67	3.000	20.00
-	∨ GL	-5. 400					
3	ar	0.400	砂質土	12. 000	60.00	3.000	180.00
	▽ GL	-8. 400					
4			砂質土	2. 333	11. 67	1.000	11.67
	▽ GL	-9. 400					
5			砂質土	7. 000	35. 00	1.800	63.00
	▽ GL	-11. 200					
6			砂質土	14. 000 (55. 00)	70. 00	7. 000	490.00
	▽ GL	-18. 200					
7			砂質土	12. 000	60, 00	10, 000	600.00
	▽ GL	-28. 200				10,000	
					120.00	1. 200	144. 00
8	▽ GL	-29. 400	砂質土	50, 000	120.00	1.200	111.00
	(杭	先端)	ルタエ	50.000		Σ	1508. 67
					4	<u>.</u>	1000.07

- (3) 押込み支持力の上限値の計算
 - 1) 地盤から決まる杭の極限支持力の特性値

$$R_{u} = q_{d} \cdot A + U \cdot \Sigma (L_{i} \cdot f_{i})$$

低減なし

$$R_u = q_d \cdot A + U \cdot \Sigma (L_i \cdot f_i)$$

= 3300.00 × 1.13097 + 3.7699 × 1518.00 = 9454.94 (kN)

タイプⅡ低減時

$$R_u = q_d \cdot A + U \cdot \Sigma \ (L_i \cdot f_i) \\ = 3300.00 \times 1.13097 + 3.7699 \times 1364.67 = 8876.88 \ (kN)$$

2) 杭体から決まる押込み支持力の特性値

$$R_{pu} = 0.85 \cdot \sigma_{ck} \cdot A_c + \sigma_y \cdot A_s \\ = 0.85 \times 24000.00 \times 1.13097 + 345000.00 \times 0.02224 = 30743.83 \mbox{ (kN)}$$

3) 押込み支持力の上限値

低減なし

押込み支持力の上限値 PNU = min(Ru, Rpu) = min(9454.94, 30743.83) = 9454.94 (kN)

タイプⅡ低減時

押込み支持力の上限値

$$P_{NU} = min(R_u, R_{pu})$$

= $min(8876.88, 30743.83) = 8876.88 (kN)$

- (4) 引抜き抵抗力の上限値の計算
 - 1) 地盤から決まる杭の極限引抜き抵抗力の特性値

$$P_u + W = U \cdot \sum (L_i \cdot f_i) + W$$

低減なし

$$P_u + W = 3.7699 \times 1662.00 + 442.78 = 6708.37$$
 (kN)

タイプⅡ低減時

$$P_u + W = 3.7699 \times 1508.67 + 442.78 = 6130.32$$
 (kN)

2) 杭体から決まる引抜き抵抗力の特性値

$$P_{pu} = \sigma_y \cdot A_s$$

= 345000.00 × 0.02224 = 7671.97 (kN)

3) 引抜き抵抗力の上限値

通常時(低減なし)

$$P_{TU} = \min(P_{u} + W, P_{pu})$$

 $= \min(6708.37, 7671.97) = 6708.37 (kN)$

$$P_{TU} = \min(P_u + W, P_{pu})$$

= $\min(6130.32, 7671.97) = 6130.32$ (kN)

3-3-2 杭の軸方向ばね定数

(1) 計算式

$$K_{\text{VE}} = \frac{1}{\frac{L}{2A_{\text{p}} \cdot E_{\text{p}}} (1 + \gamma_{\text{y}} - \zeta_{\text{e}}) + \zeta_{\text{d}} \frac{4 \gamma_{\text{y}}}{\pi D_{\text{p}}^{2} \cdot k_{\text{y}}}}$$

ここに、

Kve : 杭の軸方向ばね定数 (kN/m) A_p

: 杭の断面積 (= 1.130973 m²) : 杭のヤング係数 (= 2.50×10⁷ kN/m²) $E_{\rm p}$

L D_p

: 杭のヤング係数 (=
$$2.50 \times 10^7 \text{ kN/m}^2$$
) : 杭長 (= 27.000 m) : 杭先端の径 (= 1.200 m) : 杭先端の径 (= 1.200 m) : 鉛直方向地盤反力係数 (kN/m^3)
$$K_V = \lambda \cdot k_0 \cdot \left(\frac{B'}{0.3}\right)^{-3/4} = 1.0 \times 466666.7 \times \left(\frac{1.200}{0.3}\right)^{-3/4} = 164991.6 \text{ (kN/m}^3)$$
 : 基礎の施行方法の影響を考慮する係数 : 直径0.3mの剛体円板による平板載荷試験の値に相当する地盤反力係数 (kN/m^3)

$$k_0 = \frac{\alpha \cdot E_0}{0.3} = \frac{1 \times 140000.0}{0.3} = 466666.7 \text{ (kN/m}^3)$$

: 基礎の換算載荷幅 (m) В'

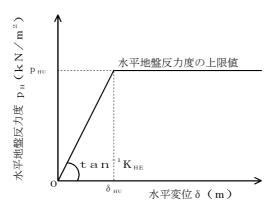
B' = D₀
α : 地盤反力係数の換算係数
E₀ : 地盤変形係数 (kN/m²)
γ_y : 杭の降伏支持力に達したときの杭頭部に作用する軸方向押込み力の杭先端へ

の伝達率の推定値 (0≦ γ y≦1)

 $\gamma_y = \lambda_{yu} \cdot \gamma_u$ λ_{yu} : 先端伝達率算出のための補正係数 γ_u : 抗の極限支持力に達したときの杭頭部に作用する軸方向押込み力の杭先端へ の伝達率の推定値

γ_u = R_{up}/R_u R_{up} : 杭先端の極限支持力の特性値 (kN) R_{up} = q_d · A = 3300.00 × 1.130973 = 3732.21 (kN) q_d : 杭先端の極限支持力度の特性値 (kN/m²)

A : 杭先端面積 (m²)
Ru : 地盤から決まる杭の極限支持力の特性値 (kN)
ζ。: 杭体収縮量に関する補正係数
ζ d : 杭の先端変位量に関する補正係数


	E係数λ _{γι} , ζ _e , ζ	, d	
杭工法	$\lambda_{\rm vu}$	ζ.	ζd
場所打ち枯丁法	0.48	0.30	0.99

(2) 杭の軸方向ばね定数Kvnの計算

1/10 / THIS / TO / T			
項目	記号	単位	タイプⅡ低減時
地盤から決まる杭の極限支持力の特性値	Ru	kN	8876. 88
極限支持力に達したときの杭先端への伝達率	γu	l	0. 420442
降伏支持力に達したときの杭先端への伝達率	γу	ı	0. 201812
杭の軸方向ばね定数	Kve	kN/m	666096.4

3-4 杭の軸直角方向の抵抗特性

杭の軸直角方向の抵抗特性は、地震時保有水平耐力法に用いる水平方向地盤反力 係数kmを初期勾配とし、水平地盤反力度の上限値pmを有する弾塑性型としてモデル

水平地盤反力度~水平変位

3-4-1 水平方向地盤反力係数

杭の軸直角方向ばね定数の計算は多層地盤を考慮し、以下のように算出する。

(1) 水平方向地盤反力係数の計算

$$k_{HE} = \eta_k \cdot \alpha_k \cdot k_H$$

 $k_{\rm HE}$: ν ベル2地震動を考慮する設計状況における杭前面の水平方向地盤反力係数(kN/m³) η_k : 群杭効果を考慮した水平方向地盤反力係数の補正係数 η_k = 2/3 α_k : 単杭における水平方向地盤反力係数の上限値の補正係数 α_k = 1.5

kH : 水平方向地盤反力係数(kN/m³)

$$k_{\text{H}} = \lambda \cdot k_0 \left(\ \frac{B'}{0.3} \ \right)^{-3/4}$$

 λ : 基礎の施行方法の影響を考慮する係数 λ = 1.0 ko : 換算載荷幅0.3mの剛体円板による平板載荷試験の値に相当する地盤反力係数 (kN/m^3)

$$k_0 = \frac{\alpha \cdot E_0}{0.3}$$

: 基礎の換算載荷幅 (m)

B' =
$$\sqrt{\frac{D}{\beta}}$$

α : 地盤反力係数の換算係数

地震時の影響を含まない場合 α = 1
 地震時の影響を含む場合 α = 2
 Ε₀ : 地盤変形係数 (kN/m²)
 β : 基礎の特性値 (m⁻¹)

$$\beta = \sqrt[4]{\frac{k_{\rm H} \cdot D}{4EI}}$$

D : 杭径 (m) EI : 基礎の曲げ剛性 (kN・m²)

1) 換算載荷幅B'の計算

B'算出上の要点は、

・B' を求める際のkHは荷重組合せに地震の影響を含まない場合の値とする。 ・深さ方向に地層が変化する場合でも、B' を算出する際のKHは設計地盤面から 1/βの深さまでの平均値とする。また、各層のKH算出時もこのB' を用いる。

 $1/\beta = 4.669$ (m) ($\beta = 0.21419$ (m⁻¹)) と仮定する →平均E₀ = 25211.8 (kN/m²)

B' =
$$\sqrt{\frac{1.200}{0.21419}}$$
 = 2.367 (m)

$$k_{\text{H}} = -\frac{1}{0.\,3} \quad \times \ 1.\,0 \ \times \ 25211.\,8 \ \times \ \left(\ \frac{2.\,367}{0.\,3} \ \right)^{\text{-3/4}} = \ 17851.\,6 \ (\text{kN/m}^{\text{3}})$$

となり、 β を計算すると下記となり、仮定した β に一致する。

$$\beta = {}^{4}\sqrt{\frac{17851.6 \times 1.200}{4 \times 25000000 \times 0.10178762}} = 0.21419 \text{ (m}^{-1})$$

以上により、換算載荷幅B'は、B' = 2.367 (m) となる。

2) 各層の水平方向地盤反力係数の計算

多層地盤を考慮するため、先に計算したB'を用いて、各地層ごとに 水平方向地盤反力係数を算出する。

タイプⅡ低減時

2.1												
No	層厚	変形係数 E ₀	k_0	$k_H(kN/m^3)$		$\eta_k \cdot \alpha_k$	k _{HE} (ki	V/m³)				
	(m)	(kN/m²)	(kN/m^3)	低減前	低減後		低減前	低減後				
1	3.000	11200.0	74666. 7	15860.7	5286. 9	1.000	15860.7	5286. 9				
2	3.000	50400.0	336000.0	71372. 9	47582. 0	1.000	71372. 9	47582. 0				
3	1.000	19600.0	130666.7	27756. 1	9252. 0	1.000	27756. 1	9252. 0				
4	1.800	19600.0	130666.7	27756. 1	27756. 1	1.000	27756. 1	27756. 1				
5	7.000	39200.0	261333. 3	55512. 3	55512. 3	1.000	55512. 3	55512. 3				
6	10.000	33600.0	224000.0	47582. 0	47582. 0	1.000	47582.0	47582. 0				
7	1 200	140000 0	033333 3	198258 2	108258 2	1 000	198258 2	108258 2				

3-4-2 水平地盤反力度の上限値

水平地盤反力度の上限値は以下の式にて算出する。

$$p_{HU} = \eta_p \cdot \alpha_p \cdot p_U$$

ここに、

PHU: 水平地盤反力度の上限値(kN/m^2) α_p : 単杭における水平地盤反力度の上限値の補正係数 粘性土地盤 $\alpha_p = 1.5 (N>2)$, $1.0 (N \le 2)$ 砂質地盤 $\alpha_p = 3.0$ η_p : 群杭効果を考慮した水平地盤反力度の上限値の補正係数 粘性土地盤 $\eta_p = 1.0$ 砂質地盤 $\eta_p \cdot \alpha_p = 荷重載荷直角方向の杭の中心間隔/杭径(<math>\le \alpha_p$) p_U : 地震時の受働土圧強度(kN/m^2)

$$p_U = K_{EF} \cdot (\gamma_i \cdot h_i + q) + 2c\sqrt{K_{EF}}$$

Kep : 地震時の受働土圧係数

$$K_{\text{EP}} = \frac{\cos^2 \phi}{\cos \delta_{\text{E}} \cdot \left\{ 1 - \sqrt{\frac{\sin(\phi - \delta_{\text{E}}) \cdot \sin(\phi + \alpha)}{\cos \delta_{\text{E}} \cdot \cos \alpha}} \right\}^2}$$

γ : 土の単位体積重量 (kN/m³)

h : 着目土層の層厚 (m)
c : 土の粘着力 (kN/m²)
q : 着目土層上端までの上載荷重 (= Σγ_i•h_i) (kN/m²)
φ : 土のせん断抵抗角 (度)

δ_E: 地震時の壁面摩擦角 (= -φ/6 度) α : 地表面と水平面のなす角度 (度)

ただし、砂質地盤における最前列以外の杭については、水平地盤反力度の上限値 pm を 最前列の値の1/2とする。

(1) 橋軸方向

1) タイプⅡ低減時

上載土

No	層厚	標高	土質名	単位重量	上載荷重
	h			γ	q
	(m)	(m)		(kN/m^3)	(kN/m^2)
1	2. 400	GL +0.000	砂質土	18.00	0.00
		GL -2.400			43. 20

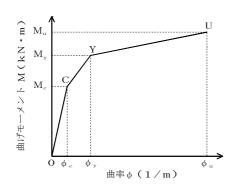
No	層厚	標高	土質名	単位重量	上載荷重	粘着力	φ	K_{EP}	土圧強度	1列目	2列目以降
	h			γ	q	С	δ_E	η _p • α _p	p_U	地盤反力度	地盤反力度
	(m)	(m)		(kN/m^3)	(kN/m^2)	(kN/m^2)	(度)		(kN/m^2)	phu (kN/m²)	phu (kN/m²)
2	3. 000	GL -2.400	砂質土	9.00	43. 20	0.00	25. 0	2. 767	119. 53	99. 61	49.81
		GL -5. 400			70. 20		-4. 167	2.500	194. 24	161.87	80.93
3	3.000	GL -5.400	砂質土	9.00	70. 20	0.00	31.0	3. 683	258. 54	430.89	215. 45
		GL -8.400			97. 20		-5. 167	2.500	357. 97	596. 62	298. 31
4	1.000	GL -8.400	砂質土	9.00	97. 20	0.00	25. 0	2. 767	268.95	224. 12	112.06
		GL -9.400			106. 20		-4. 167	2.500	293. 85	244. 88	122. 44
5	1.800	GL -9.400	砂質土	9.00	106. 20	0.00	25. 0	2. 767	293. 85	734. 63	367. 32
		GL -11. 200			122. 40		-4. 167	2.500	338.68	846. 69	423. 35
6	7. 000	GL -11. 200	砂質土	9.00	122. 40	55. 00	0.0	1.000	232. 40	581.00	290. 50
		GL -18. 200			185. 40		0.000	2.500	295.40	738. 50	369. 25
7	10.000	GL -18. 200	砂質土	9.00	185. 40	0.00	29.0	3. 339	618.98	1547. 44	773.72
		GL -28. 200			275. 40		-4.833	2.500	919.45	2298.63	1149.31
8	1. 200	GL -28. 200	砂質土	10.00	275. 40	0.00	42.0	6.769	1864. 21	4660. 51	2330. 26
		GL -29. 400			287.40		-7.000	2.500	1945. 43	4863. 59	2431.79

3-5 M-φ曲線

3-5-1 杭断面性能

・主鉄筋の断面諸条件 <u>杭径 1200.0 mm</u> <u>鉄筋材質 SD345</u> <u>降伏強度 345.0 N/mm²</u>

		_ 1000.0 111	27 1/3	/J J 52	DOIO	十 レ いっ	W.C. 010.0	11/ 11411	
	No	区間長	段番号	かぶり	鉄筋径	本数	鉄筋量	換算断面積	換算断面二次
L		(m)		(mm)			(mm ²)	(mm ²)	(mm ⁴)
Г	1	27. 100	1段目	150.0	D32	28.0	22237.6	1.3089×10^{6}	1.19800×10^{11}
			2段目						
L			3段目						


・帯鉄筋、横拘束鉄筋の断面諸条件 抗径 1200.0 mm 鉄筋材質 SD345 降伏強度 345.0 N/mm²

No	区間長		帯	鉄筋		横拘束鉄筋			
		径	ピッチ	本数	断面積	ピッチ	有効長	断面積	
	(m)	(mm)	(mm)		(mm ²)	(mm)	(mm)	(mm ²)	
1	27. 100	D16	150.0	2.0	397. 2	150.0	700.0	198.600	

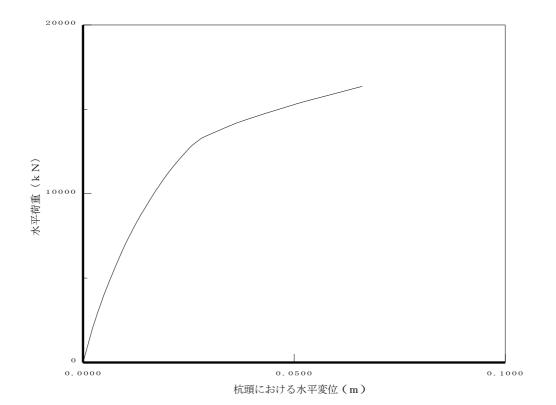
3-5-2 杭体の曲げモーメント〜曲率関係

(1) 橋軸方向

1) タイプⅡ・浮力なし

 $M-\phi$ 軸力 $P_n = 0.00$ (kN)

No	区間長	深さ	ひび割れ時		降伏甲	庤	終局時	
			Фс	$M_{\rm c}$	фу	$M_{\rm y}$	ϕ_{u}	M_u
	(m)	(m)	(1/m)	$(kN \cdot m)$	(1/m)	$(kN \cdot m)$	(1/m)	(kN • m)
1	27. 100	27. 100	1. 276×10 ⁻⁴	382. 10	2.664×10^{-3}	2191.76	3. 282×10 ⁻²	3419.01


 $M-\phi$ 軸力 $P_n = 1514.62$ (kN)

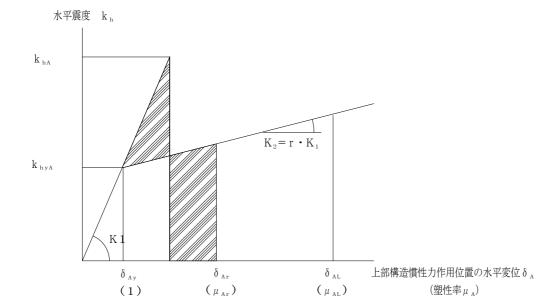
N	o 区間長	深さ	ひび割れ時		降伏時		終局時	
			Фс	$M_{\rm c}$	фу	M_{y}	$\phi_{ m u}$	M_{ti}
L	(m)	(m)	(1/m)	(kN • m)	(1/m)	(kN • m)	(1/m)	$(kN \cdot m)$
	27. 100	27. 100	2.047×10^{-4}	613. 15	2.915×10^{-3}	2650.85	2. 872×10 ⁻²	3944.39

3-6 照査結果

3-6-1 橋軸方向(タイプⅡ・液状化地盤・浮力なし)

(1) 荷重-変位曲線

基礎の降伏水平震度 $k_{hyA}=0.41$ 降伏時の杭頭変位 $\delta_{Ay}=0.0240$ (m) 降伏時の杭頭回転角 $\phi_{Ay}=1.3796\times 10^{-3}$ (rad)


(2) 荷重-変位曲線詳細

No	αі	水平 震度	水平力 (kN)	杭頭変位 (m)	回転変位 (×10 ⁻³ rad)	水平変位 (m)	TYPE	状 態
1	0.0000	0.000	1844. 22	0.0020	0. 1539	0.0029		2列目の杭がひび割れた
2	0.0000	0.000	1851. 29	0.0021	0. 1545	0.0029		1列目の杭がひび割れた
3	0.0000	0.000	1923. 94	0.0021	0. 1606	0.0030	L	死荷重が載荷された
4	0.0093	0.005	2057. 84	0.0023	0. 1762	0.0033		2列目の杭がひび割れた
5	0.0098	0.005	2065. 55	0.0023	0. 1770	0.0033		1列目の杭がひび割れた
6	0.0374	0. 021	2463. 65	0.0028	0. 2214	0.0041		2列目の杭がひび割れた
7	0.0379	0.021	2471. 22	0.0028	0. 2222	0.0041		1列目の杭がひび割れた
8	0.0663	0.037	2881.01	0.0034	0. 2678	0.0049		3列目の杭がひび割れた
9	0.0758	0.042	3017.42	0.0036	0. 2830	0.0051		2列目の杭がひび割れた
10	0.0763	0.043	3025.44	0.0036	0. 2839	0.0052		1列目の杭がひび割れた
11	0.0864	0.048	3171.48	0.0038	0. 2998	0.0054		3列目の杭がひび割れた
12	0. 1235	0.069	3706.80	0.0045	0. 3564	0.0065		3列目の杭がひび割れた
13	0. 1319	0.074	3827.82	0.0047	0. 3691	0.0068		2列目の杭がひび割れた
14	0. 1319	0.074	3827. 98	0.0047	0. 3692	0.0068		1列目の杭がひび割れた
15	0. 1322	0.074	3832.40	0.0047	0. 3696	0.0068		2列目の杭がひび割れた
16	0. 1322	0.074	3832.47	0.0047	0. 3696	0.0068		1列目の杭がひび割れた
17	0. 1326	0.074	3837. 59	0.0047	0. 3702	0.0068		1列目の杭がひび割れた
18	0. 1326	0.074	3837.62	0.0047	0. 3702	0.0068		2列目の杭がひび割れた
19	0. 1365	0.076	3893. 89	0.0048	0. 3762	0.0069		2列目の杭がひび割れた
20	0. 1365	0.076	3894. 14	0.0048	0. 3763	0.0069		1列目の杭がひび割れた
21	0. 1393	0.078	3934. 41	0.0048	0. 3806	0.0070		1列目の杭がひび割れた
22	0. 1393	0.078	3934. 62	0.0048	0. 3807	0.0070		2列目の杭がひび割れた
23	0. 1419	0.079	3972. 94	0.0049	0. 3849	0.0071		2列目の杭がひび割れた
24	0. 1423	0.080	3978. 69	0.0049	0. 3855	0.0071		1列目の杭がひび割れた
25	0.1424	0.080	3979.62	0.0049	0. 3856	0.0071		2列目の杭がひび割れた
26	0. 1424	0.080	3980.03	0.0049	0. 3856	0.0071		1列目の杭がひび割れた
27	0. 1475	0.083	4053.35	0.0050	0. 3937	0.0072		1列目の杭がひび割れた
28	0. 1475	0.083	4053.73	0.0050	0. 3937	0.0072		2列目の杭がひび割れた
29	0. 1526	0.085	4127. 14	0.0051	0. 4018	0.0074		2列目の杭がひび割れた
30	0. 1527	0.085	4127.63	0.0051	0. 4019	0.0074		1列目の杭がひび割れた
31	0.1650	0.092	4305.66	0.0054	0. 4215	0.0078		2列目の杭がひび割れた
32	0.1650	0.092	4306. 25	0.0054	0. 4216	0.0078		1列目の杭がひび割れた
33	0. 1676	0.094	4342. 94	0.0055	0. 4257	0.0079		1列目の杭がひび割れた
34	0. 1676	0.094	4343.63	0.0055	0. 4257	0.0079		2列目の杭がひび割れた
35	0. 1688	0.095	4360.41	0.0055	0. 4276	0.0079		3列目の杭がひび割れた
36	0. 1803	0. 101	4527. 12	0.0058	0. 4459	0.0083		2列目の杭がひび割れた
37	0. 1804	0. 101	4527. 91	0.0058	0. 4460	0.0083		1列目の杭がひび割れた
38	0. 1925	0. 108	4702.72	0.0061	0. 4653	0.0087		1列目の杭がひび割れた
39	0. 1926	0. 108	4703. 76	0.0061	0. 4654	0.0087		2列目の杭がひび割れた
40	0. 1993	0. 112	4800.54	0.0062	0. 4761	0.0089		2列目の杭がひび割れた
41	0. 1993	0. 112	4801.45	0.0062	0. 4762	0.0089		1列目の杭がひび割れた
42	0. 2104	0. 118	4961.34	0.0065	0. 4938	0.0092		2列目の杭がひび割れた
43	0. 2108	0. 118	4966. 44	0.0065	0. 4944	0.0093		1列目の杭がひび割れた
44	0. 2197	0. 123	5095. 44	0.0067	0. 5084	0.0095		2列目の杭がひび割れた
45	0. 2198	0. 123	5096. 43	0.0067	0. 5085	0.0095		1列目の杭がひび割れた
46	0. 2405	0. 135	5394. 83	0.0072	0. 5410	0. 0102		1列目の杭がひび割れた
47	0. 2405	0. 135	5395. 73	0.0072	0. 5411	0. 0102		2列目の杭がひひ割れた
48	0. 2450	0. 137	5460. 92	0.0073	0. 5482	0. 0104		2列目の杭がひび割れた
49	0. 2451	0. 137	5462. 10	0.0073	0. 5483	0. 0104		1列目の杭がひび割れた
50	0. 2493	0. 140	5522. 19	0.0074	0. 5549	0. 0105		3列目の杭がひび割れた
51	0. 2551	0. 143	5606. 72	0.0075	0. 5642	0. 0107		3列目の杭がひび割れた
52 52	0. 2558	0. 143	5617. 00 5628. 83	0.0076	0. 5653	0. 0107		3列目の杭がひひ割れた 3列目の杭がひひ割れた
53 54	0. 2567	0. 144		0.0076	0. 5666	0. 0107		, v =
54 55	0. 2612 0. 2667	0. 146 0. 149	5694. 06 5773. 42	0. 0077 0. 0078	0. 5738 0. 5827	0. 0109 0. 0111		3列目の杭がひひ割れた 3列目の杭がひび割れた
56	0. 2689	0. 149	5805. 21	0.0078	0. 5827	0. 0111		3列目の杭がひび割れた
57	0. 2689	0. 151	5915. 16	0.0079	0. 5862	0. 0112		2列目の杭がひび割れた
58	0. 2766	0. 155	5916. 37	0.0081	0. 5986	0. 0114		1列目の杭がひび割れた
59	0. 2789	0. 155	5916. 3 <i>1</i> 5950. 23	0.0081	0. 5987	0. 0114		3列目の杭がひび割れた
60	0. 2109	0. 150	6004. 77	0.0081	0.6025	0. 0115		3列目の杭がひび割れた
61	0. 2027	0. 168	6244. 91	0.0082	0. 6356	0. 0110		3列目の杭がひび割れた
62	0. 2993	0. 169	6283. 75	0.0086	0. 6400	0. 0122		1列目の杭がひび割れた
63	0. 3020	0. 169	6284. 94	0.0087	0. 6400	0. 0123		2列目の杭がひび割れた
64	0. 3021	0. 169	6380. 56	0.0087	0. 6509	0. 0123		3列目の杭がひび割れた
65	0. 3087	0. 173	6482.64	0.0089	0. 6624	0. 0125		2列目の杭がひび割れた
66	0. 3158	0. 177	6483. 92	0.0091	0. 6625	0. 0128		1列目の杭がひび割れた
67	0. 3159	0. 177	6516. 36	0.0091	0. 6662	0. 0128		2列目の杭がひび割れた
01	1	0. 178	6520. 82	0.0091	0. 6667	0. 0129		2月目の杭がひび割れた
60	0.5105							
68 69	0. 3185 0. 3198	0. 178	6539. 99	0.0091	0. 6689	0. 0129	l	3列目の杭がひび割れた

									Page (26)
No	α_{i}	水平	水平力	杭頭変位	回転変位	水平変位	TYPE	状 態		\neg
110	α,	震度	(kN)	(m)	$(\times 10^{-3} \text{ rad})$	(m)		V 7E		
71	0. 3436	0. 192	6883. 57	0.0098	0. 7077	0. 0137		2列目の杭の地盤が塑性化した		
72	0. 3437	0. 192	6884. 57	0.0098	0. 7078	0. 0137		1列目の杭の地盤が塑性化した		
	1		1							
73	0. 3454	0. 193	6909. 22	0.0098	0.7106	0. 0138		3列目の杭がひび割れた		
74	0. 3463	0. 194	6922. 31	0.0098	0.7121	0.0138		3列目の杭がひび割れた		
75	0. 3576	0. 200	7086. 46	0.0102	0. 7308	0.0143		2列目の杭の地盤が塑性化した		
76	0.3577	0. 200	7086.88	0.0102	0. 7309	0.0143		1列目の杭の地盤が塑性化した		
77	0.3595	0. 201	7113. 20	0.0102	0. 7339	0.0143		2列目の杭がひひ割れた		
78	0.3596	0. 201	7114. 33	0.0102	0.7341	0.0143		1列目の杭がひひ割れた		
79	0.3701	0. 207	7266. 41	0.0105	0.7517	0.0147		3列目の杭がひび割れた		
80	0. 3999	0. 224	7695. 87	0.0114	0.8016	0. 0159		3列目の杭がひび割れた		
81	0. 4071	0. 228	7800. 74	0.0111	0.8138	0. 0162		2列目の杭がひび割れた		
82	0.4072	0. 228	7801. 93	0.0116	0.8140	0. 0162		1列目の杭がひび割れた		
83	0.4097	0. 229	7838. 51	0.0117	0.8182	0.0163		3列目の杭がひひ割れた		
84	0.4165	0. 233	7935. 45	0.0119	0.8295	0.0165		2列目の杭の地盤が塑性化した		
85	0.4165	0. 233	7935. 98	0.0119	0.8296	0.0165		1列目の杭の地盤が塑性化した		
86	0.4365	0. 244	8224.82	0.0125	0.8639	0.0174		3列目の杭がひび割れた		
87	0.4459	0. 250	8360.98	0.0128	0.8800	0.0177		2列目の杭の地盤が塑性化した		
88	0.4460	0. 250	8361.88	0.0128	0.8801	0.0177		1列目の杭の地盤が塑性化した		
89	0. 4501	0. 252	8420. 70	0.0129	0. 8872	0. 0179		2列目の杭がひび割れた		
90	1	0. 252	8423. 62			0. 0179		1列目の杭がひび割れた		
	0. 4503			0.0130	0. 8876					
91	0. 4583	0. 257	8539. 74	0.0132	0. 9014	0. 0183		2列目の杭がひび割れた		
92	0.4584	0. 257	8540. 75	0.0132	0. 9015	0.0183		1列目の杭がひび割れた		
93	0.4630	0. 259	8607. 25	0.0134	0. 9095	0.0185		3列目の杭がひび割れた		
94	0.4792	0. 268	8841. 25	0.0139	0. 9373	0.0192		3列目の杭がひび割れた		
95	0. 4849	0. 272	8923. 84	0.0141	0.9472	0.0194		2列目の杭の地盤が塑性化した		
96	0. 4850	0. 272	8924. 39	0.0141	0. 9473	0. 0194		1列目の杭の地盤が塑性化した		
97	0. 4914	0. 275	9017. 27	0.0143	0. 9585	0. 0197		3列目の杭がひび割れた		
98	0. 5130	0. 287	9329. 21	0. 0115	0. 9962	0. 0207		2列目の杭がひび割れた		
99	1	0. 287	9330. 18			0. 0207		1列目の杭がひび割れた		
	0. 5131			0.0151	0. 9963					
100	0. 5272	0. 295	9534. 50	0.0156	1. 0211	0. 0213		1列目の杭がひび割れた		
101	0.5276	0. 295	9539. 21	0.0156	1. 0216	0.0213		2列目の杭がひび割れた		
102	0.5278	0. 296	9543. 27	0.0156	1. 0221	0.0214		3列目の杭がひひ割れた		
103	0.5629	0. 315	10049. 76	0.0169	1. 0835	0.0229		2列目の杭の地盤が塑性化した		
104	0.5630	0.315	10050.56	0.0169	1. 0836	0.0229		1列目の杭の地盤が塑性化した		
105	0.5646	0. 316	10074. 40	0.0169	1. 0865	0.0230		2列目の杭の地盤が塑性化した		
106	0.5647	0. 316	10074. 94	0.0169	1. 0865	0.0230		1列目の杭の地盤が塑性化した		
107	0. 5772	0. 323	10255. 71	0.0174	1. 1089	0. 0236		2列目の杭がひび割れた		
108	0. 5773	0. 323	10256, 54	0.0174	1. 1090	0. 0236		1列目の杭がひび割れた		
	1	0. 323	10230. 34			0. 0230		3列目の杭がひび割れた		
109	0. 5885	1		0.0179	1. 1290					
110	0.6071	0. 340	10686. 90	0.0186	1. 1622	0. 0251		3列目の杭がひび割れた		
111	0.6203	0. 347	10877.53	0.0191	1. 1857	0. 0258		2列目の杭がひひ割れた		
112	0.6204	0. 347	10879.30	0.0191	1. 1859	0.0258		1列目の杭がひひ割れた		
113	0.6285	0. 352	10995.94	0.0195	1. 2002	0.0262		3列目の杭の地盤が塑性化した		
114	0.6434	0.360	11212.01	0.0201	1. 2273	0.0270		2列目の杭がひび割れた		
115	0.6435	0. 360	11212. 74	0.0201	1. 2274	0.0270		1列目の杭がひび割れた		
116	0.6476	0. 363	11271. 34	0. 0203	1. 2347	0. 0272		3列目の杭の地盤が塑性化した		
117	0. 6508	0.364	11318. 51	0.0204	1. 2407	0. 0274		2列目の杭の地盤が塑性化した		
118	0. 6508	0. 364	11318. 99	0. 0204	1. 2407	0. 0274		1列目の杭の地盤が塑性化した		
	1	1								
119	0. 6521	0. 365	11337. 25	0. 0205	1. 2431	0. 0274		3列目の杭がひび割れた		
120	0.6736	0. 377	11647. 05	0.0215	1. 2830	0. 0287		3列目の杭がひび割れた		
121	0.6836	0. 383	11792. 25	0.0219	1. 3017	0.0292		2列目の杭の地盤が塑性化した		
122	0.6837	0. 383	11792.80	0.0219	1. 3018	0.0292		1列目の杭の地盤が塑性化した		
123	0.6862	0.384	11829. 17	0.0221	1. 3065	0.0294		2列目の杭が弾性硬化した		
124	0.6864	0.384	11831. 75	0.0221	1. 3068	0.0294		1列目の杭が弾性硬化した		
125	0.6929	0.388	11925.71	0.0224	1. 3191	0.0298	Y-3	3列目の杭が降伏した		
126	0. 7008	0. 392	12039.65	0. 0228	1. 3340	0. 0303		2列目の杭がひび割れた		
127	0.7008	0. 392	12040. 22	0.0228	1. 3340	0. 0303		1列目の杭がひび割れた		
128	0. 7008	0. 392	12273. 96	0. 0228	1. 3645	0. 0303		3列目の杭の地盤が塑性化した		
129	0.7190	0. 403	12302. 16	0. 0237	1. 3683	0. 0314	** ~	3列目の杭がひび割れた		
130	0.7248	0.406	12386. 77	0.0240	1. 3795	0. 0317	Y-2	2列目の杭が降伏した		
131	0.7249	0.406	12387. 53	0.0240	1. 3796	0.0317	Y-1	1列目の杭が降伏した		
132	0.7381	0.413	12577. 55	0.0247	1. 4048	0.0326		2列目の杭の地盤が塑性化した		
133	0.7381	0.413	12577. 95	0.0247	1. 4049	0.0326		1列目の杭の地盤が塑性化した		
134	0.7498	0.420	12746. 60	0.0253	1. 4275	0.0333		3列目の杭の地盤が塑性化した		
135	0. 7576	0. 424	12859.83	0. 0258	1. 4430	0. 0339		2列目の杭がひび割れた		
136	0. 7576	0. 424	12860. 28	0. 0258	1. 4431	0. 0339		1列目の杭がひび割れた		
137	0. 7580	0. 424	12865. 29	0. 0258	1. 4438	0. 0339		3列目の杭が降伏した		
	1	1								
138	0. 7701	0. 431	13040. 36	0.0267	1. 4665	0. 0349		2列目の杭がひび割れた		
139	0. 7702	0. 431	13040. 92	0.0267	1. 4666	0. 0349		1列目の杭がひび割れた		
140	0. 7841	0. 439	13242. 38	0.0278	1. 4924	0.0361		2列目の杭の地盤が塑性化した		
141	0.7841	0. 439	13242.68	0.0278	1. 4925	0.0361		1列目の杭の地盤が塑性化した		
142	0.7880	0.441	13298. 91	0.0281	1. 4998	0.0365		3列目の杭の地盤が塑性化した		
143	0. 7889	0.442	13312.00	0.0282	1. 5015	0.0366		2列目の杭が降伏した		

No	α_{i}	水平	水平力	杭頭変位	回転変位	水平変位	TYPE	状 態	
		震度	(kN)	(m)	(×10 ⁻³ rad)	(m)			
144	0.7890	0.442	13312. 31	0.0282	1. 5015	0.0366		1列目の杭が降伏した	
145	0. 7935	0. 444	13378. 19	0.0288	1. 5084	0.0372		3列目の杭がひび割れた	
146	0.7941	0.445	13386.07	0.0289	1. 5092	0.0373		2列目の杭がひび割れた	
147	0.7941	0.445	13386. 22	0.0289	1. 5092	0.0373		1列目の杭がひび割れた	
148	0.8307	0.465	13914.55	0.0337	1. 5643	0.0425		3列目の杭がひび割れた	
149	0.8310	0.465	13918.96	0.0337	1. 5648	0.0425		2列目の杭がひび割れた	
150	0.8310	0.465	13919. 10	0.0338	1. 5648	0.0425		1列目の杭がひび割れた	
151	0.8364	0.468	13997.36	0.0345	1. 5729	0.0433		3列目の杭の地盤が塑性化した	
152	0.8432	0.472	14095.61	0.0354	1. 5833	0.0443		2列目の杭がひび割れた	
153	0.8432	0.472	14095.69	0.0354	1. 5833	0.0443		1列目の杭がひび割れた	
154	0.8494	0.476	14184.33	0.0363	1. 5927	0.0452		3列目の杭の地盤が塑性化した	
155	0.8524	0.477	14227.54	0.0367	1. 5974	0.0457		2列目の杭の地盤が塑性化した	
156	0.8524	0.477	14227.65	0.0367	1. 5974	0.0457		1列目の杭の地盤が塑性化した	
157	0.8568	0.480	14291.59	0.0375	1. 6045	0.0465		3列目の杭がひび割れた	
158	0.8618	0.483	14364.55	0.0384	1. 6125	0.0474		2列目の杭がひび割れた	
159	0.8619	0.483	14364.66	0.0384	1. 6125	0.0474		1列目の杭がひび割れた	
160	0.8869	0.497	14726.61	0.0428	1. 6525	0.0520		3列目の杭の地盤が塑性化した	
161	0.8895	0.498	14764. 10	0.0433	1. 6568	0.0526		2列目の杭がひび割れた	
162	0.8895	0.498	14764. 21	0.0433	1. 6568	0.0526		1列目の杭がひび割れた	
163	0.9021	0.505	14945.74	0.0456	1. 6772	0.0550		3列目の杭がひび割れた	
164	0.9175	0. 514	15167.62	0.0485	1. 7022	0.0580		2列目の杭がひび割れた	
165	0.9175	0. 514	15167.72	0.0485	1. 7022	0.0580		1列目の杭がひび割れた	
166	0. 9232	0.517	15250. 25	0.0496	1. 7115	0.0592		3列目の杭が降伏した	
167	0. 9289	0. 520	15332.97	0.0507	1. 7208	0.0603		3列目の杭の地盤が塑性化した	
168	0.9432	0. 528	15538. 79	0.0536	1. 7445	0.0634		3列目の杭の地盤が塑性化した	
169	0.9501	0. 532	15638.98	0.0551	1. 7563	0.0650		2列目の杭が降伏した	
170	0.9501	0.532	15639.04	0.0551	1. 7563	0.0650		1列目の杭が降伏した	
171	0.9516	0. 533	15660. 19	0.0554	1. 7588	0.0653		3列目の杭がひび割れた	
172	0.9528	0.534	15677. 13	0.0557	1. 7608	0.0656		2列目の杭がひび割れた	
173	0.9528	0.534	15677. 21	0.0557	1. 7608	0.0656		1列目の杭がひび割れた	
174	0.9764	0. 547	16018.69	0.0609	1.8009	0.0710		3列目の杭がひび割れた	
175	0. 9893	0. 554	16204. 28	0.0637	1.8227	0.0739		2列目の杭がひび割れた	
176	0. 9893	0. 554	16204.36	0.0637	1.8227	0.0739		1列目の杭がひび割れた	
177	0. 9931	0. 556	16259. 11	0.0646	1.8292	0.0748		3列目の杭がひび割れた	
178	1.0000	0.560	16358.74	0.0661	1.8409	0.0764	F	作用荷重が全載荷された	

(3) 応答塑性率

設計水平震度 橋台基礎の降伏水平震度 橋台基礎の塑性率の制限値 $\begin{array}{rcl} k_{hA} & = & 0.56 \\ k_{hyA} & = & 0.41 \\ \mu_{AL} & = & 3.0000 \end{array}$

初期変位を無視した場合の橋台基礎の応答塑性率

$$\mu'_{Ar} = \frac{1}{2} \left\{ 1 + \left(\frac{k_{hA}}{k_{hyA}} \right)^{2} \right\}$$

$$= \frac{1}{2} \left\{ 1 + \left(\frac{0.56}{0.41} \right)^{2} \right\} = 1.4328$$

初期荷重による上部構造慣性力作用位置での水平変位 $\delta_0 = 0.003030$ (m) 初期荷重を無視した場合の基礎が降伏に達する時の 上部構造の慣性力作用位置での水平変位 $\delta'_{Ay} = 0.028716$ (m)

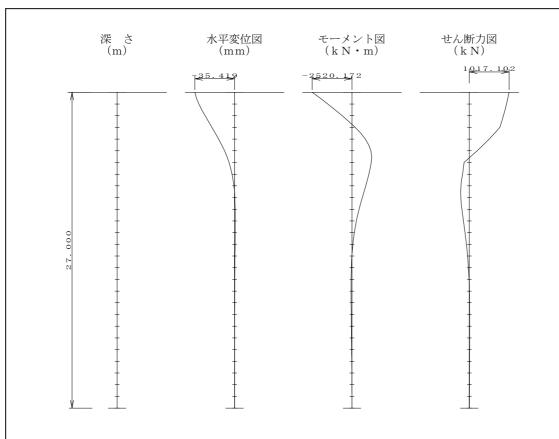
橋台基礎が降伏に達する時の

上部構造の慣性力作用位置での水平変位

 $\delta_{Ay} = 0.031747 \text{ (m)}$

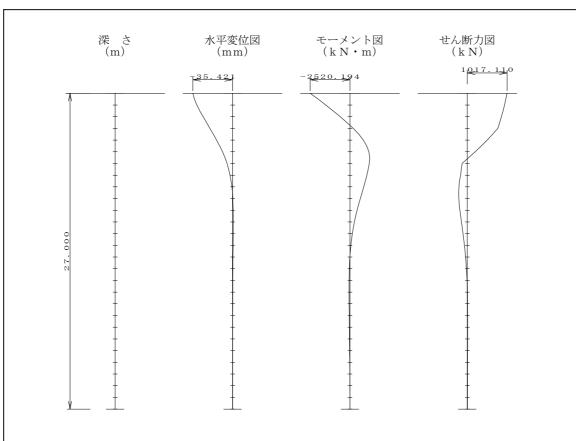
橋台基礎の変形による上部構造の慣性力作用位置での水平変位 $\delta_{\rm Ar} = \mu^{\prime}_{\rm Ar} \cdot \delta^{\prime}_{\rm Ay} + \delta_{\rm 0} = 0.044175 \ (m)$

橋台基礎の応答塑性率

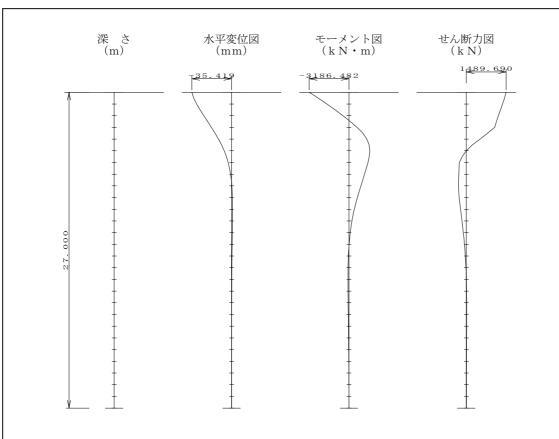

$$\mu_{Ar} = \frac{\delta_{Ar}}{\delta_{Ay}}$$

$$= \frac{0.0442}{0.0317} = 1.3915$$

(4) 断面力及び変位


1) 1列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	$(\times 10^{-3} \text{ rad})$	(kN • m)	(kN)
0.000	-2. 360	-35. 419	1. 583	-2520. 172	1017. 102
0.500	-2. 360	-34. 032	3.874	-2019. 566	985. 591
1.000	-2. 360	-31.823	4. 915	-1535. 534	950. 983
1.500	-2. 360	-29. 179	5. 623	-1069.625	913. 278
2.000	-2. 360	-26. 264	6.011	-623. 387	872. 481
2.500	-2.360	-23. 234	6. 095	-198. 367	828. 584
3.000	-2. 360	-20. 183	6.094	203. 881	781. 581
3.500	-2. 360	-17. 149	6. 030	560. 304	648. 237
4.000	-2.360	-14. 200	5. 738	847. 741	506. 749
4. 500	-2. 360	-11. 443	5. 270	1062. 130	357. 146
5.000	-2. 360	-8. 953	4. 678	1199. 439	199. 416
5. 500	-2. 360	-6. 777	4. 017	1255.641	33. 532
6.000	-2. 360	-4. 937	3. 347	1228.613	-132. 885
6.500	-2. 360	-3. 423	2. 715	1156. 056	-155. 943
7.000	-2. 360	-2. 212	2. 137	1073. 927	-171. 450
7. 450	-2. 360	-1.357	1. 669	990. 336	-197. 932
7. 900	-2. 360	-0.700	1. 257	897. 482	-213. 115
8. 350	-2. 360	-0. 215	0. 906	799. 809	-219. 774
8.800	-2. 360	0. 126	0. 616	700. 606	-220. 277
9. 300	-2. 360	0. 370	0. 367	592. 281	-211. 670
9.800	-2. 360	0. 509	0. 192	489. 973	-196. 794
10. 300	-2. 360	0. 577	0. 086	396. 038	-178. 569
10.800	-2. 360	0.605	0. 027	311. 655	-158. 811
11. 300	-2. 360	0.606	-0. 019	237. 303	-138. 589
11.800	-2. 360	0. 587	-0. 053	173. 015	-118. 666
12. 300	-2. 360	0. 555	-0. 077	118. 491	-99. 614
12. 800	-2. 360	0.512	-0. 093	73. 188	-81. 837
13. 300	-2. 360	0. 463	-0. 102	36. 396	-65. 602
13. 800	-2. 360	0. 410	-0. 106	7. 303	-51. 061
14. 300	-2. 360	0. 358	-0. 105	-14. 957	-38. 274
14. 800	-2. 360	0.306	-0. 101	-31. 262	-27. 232
15. 300	-2. 360	0. 257	-0. 095	-42. 469	-17. 869
15. 800	-2. 360	0. 211	-0. 087	-49. 394	-10. 084
16. 300	-2. 360	0. 170	-0. 079	-53. 029	-4. 654
16. 800	-2. 360	0. 170	-0. 070	-54. 235	-0. 344
17. 300	-2. 360	0. 100	-0.061	-53. 539	2. 973
17. 800	-2. 360	0. 100	-0. 052	-51. 405	5. 426
18. 300	-2. 360	0.012	-0.043	-48. 236	7. 140
18. 800	-2. 360	0.040	-0.036	-44. 369	8. 233
19. 300	-2. 360	0.023	-0. 029	-40. 088	8. 816
19. 800	-2. 360	0.013	-0. 022	-35. 621	8. 989
20, 300	-2. 360 -2. 360	-0.010	-0. 017	-31. 152	8. 843
20. 800	-2. 360	-0.017	-0.012	-26. 818	8. 457
21. 300	-2. 360 -2. 360	-0.022	-0.008	-22. 723	7. 900
21. 800	-2. 360 -2. 360	-0.025	-0.004	-18. 937	7. 232
22. 300	-2. 360 -2. 360		-0.001		ı
22. 300	-2. 360 -2. 360	-0. 026 -0. 026	0.001	-15. 502 -12. 439	6. 502 5. 750
23. 300	-2. 360 -2. 360	-0.026	0.001	-12. 439 -9. 749	5. 750 5. 011
23. 800					
1 1	-2. 360 -2. 360	-0. 024 -0. 021	0.004	-7. 421 -5. 420	4. 311
24. 300	-2. 360 -2. 360	-0. 021 -0. 018	0.005	-5. 429 -2. 720	3. 669
24. 800	-2. 360	-0.018	0.006	-3. 739	3. 102
25. 300	-2. 360 -2. 360	-0.015	0.007	-2. 312 -1. 102	2. 621
25. 800	-2. 360	-0.012	0.007	-1. 103	2. 232
26. 200	-2. 360	-0.009	0.007	-0.420	1. 226
26. 600	-2. 360	-0.006	0.007	-0.087	0. 481
27. 000	-2.360	-0.004	0.007	0.000	0.000


2) 2列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	(×10 ⁻³ rad)	(kN • m)	(kN)
0.000	2. 389	-35. 421	1. 583	-2520. 194	1017. 110
0.500	2. 389	-34. 033	3. 874	-2019. 583	985. 600
1.000	2. 389	-31.824	4. 915	-1535. 548	950. 991
1.500	2. 389	-29. 180	5. 623	-1069. 635	913. 287
2.000	2. 389	-26. 265	6. 012	-623. 393	872. 490
2. 500	2. 389	-23. 234	6. 095	-198. 368	828. 593
3.000	2. 389	-20. 184	6. 094	203. 884	781. 589
3. 500	2. 389	-17. 149	6. 030	560. 311	648. 245
4.000	2. 389	-14. 201	5. 738	847. 753	506. 757
4. 500	2. 389	-11. 444	5. 270	1062. 146	357. 155
5.000	2. 389	-8. 953	4. 678	1199. 459	199. 424
5. 500	2. 389	-6. 778	4. 018	1255. 664	33. 540
6.000	2. 389	-4. 937	3. 347	1228. 639	-132. 885
6.500	2. 389	-3. 423	2. 715	1156. 082	-155. 943
7.000	2. 389	-2. 212	2. 137	1073. 953	-171. 451
7. 450	2. 389	-1. 357	1. 669	990. 361	-197. 935
7. 900	2. 389	-0. 700	1. 257	897. 505	-213. 119
8. 350	2. 389	-0. 215	0. 906	799. 830	-219. 779
8.800	2. 389	0. 126	0. 616	700. 625	-220. 282
9. 300	2. 389	0. 370	0. 367	592. 297	-211. 675
9.800	2. 389	0. 509	0. 192	489. 987	-196. 799
10.300	2. 389	0. 577	0. 086	396. 049	-178. 574
10.800	2. 389	0.605	0. 027	311. 664	-158. 815
11. 300	2. 389	0.606	-0. 019	237. 311	-138. 592
11.800	2. 389	0. 588	-0. 053	173. 021	-118. 670
12. 300	2. 389	0. 555	-0.077	118. 495	-99. 617
12. 800	2. 389	0. 512	-0.093	73. 190	-81. 840
13. 300	2. 389	0. 463	-0. 102	36. 398	-65. 604
13. 800	2. 389	0. 410	-0. 106	7. 304	-51.062
14. 300	2. 389	0. 358	-0. 105	-14. 957	-38. 275
14. 800	2. 389	0.306	-0. 101	-31. 263	-27. 233
15. 300	2. 389	0. 257	-0. 095	-42. 470	-17. 870
15. 800	2. 389	0. 211	-0. 087	-49. 395	-10. 084
16. 300	2. 389	0. 170	-0.079	-53. 031	-4. 654
16.800	2. 389	0. 133	-0.070	-54. 236	-0.344
17. 300	2. 389 2. 389	0. 100	-0. 061 -0. 052	-53. 540 -51. 407	2. 973
17. 800	2. 389	0.072	-0.032	-51. 407	5. 426
18. 300 18. 800	2. 389 2. 389	0. 048 0. 029	1	-48. 237 -44. 370	7. 140 8. 233
19. 300	2. 389 2. 389	0. 029	-0. 036 -0. 029	-44. 370 -40. 089	8. 233 8. 816
19. 800	2. 389 2. 389	0.013	-0. 029 -0. 022	-35. 622	8. 989
20. 300	2. 389	-0.010	-0.017	-31. 153	8. 843
20. 800	2. 389	-0.017	-0.012	-26. 819	8. 457
21. 300	2. 389	-0.022	-0.008	-22. 724	7. 900
21. 800	2. 389	-0. 025	-0.004	-18. 937	7. 232
22. 300	2. 389	-0. 026	-0.001	-15. 502	6. 502
22. 800	2. 389	-0.026	0.001	-12. 439	5. 750
23. 300	2. 389	-0. 025	0.001	-9. 750	5. 011
23. 800	2. 389	-0.024	0.003	-7. 421	4. 311
24. 300	2. 389	-0. 021	0.004	-5. 429	3. 669
24. 800	2. 389	-0.018	0.006	-3.740	3. 102
25. 300	2. 389	-0.015	0.007	-2.312	2. 621
25. 800	2. 389	-0.012	0.007	-1. 103	2. 232
26. 200	2. 389	-0.009	0.007	-0. 420	1. 226
26. 600	2. 389	-0.006	0.007	-0.087	0. 481
27. 000	2. 389	-0.004	0.007	0.000	0. 000
21.000	2. 000	0.004	0.001	0.000	0.000

3) 3列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	$(\times 10^{-3} \text{ rad})$	(kN • m)	(kN)
0.000	7. 135	-35. 419	1. 581	-3186. 482	1489. 690
0.500	7. 135	-33. 790	4. 745	-2457. 516	1426. 661
1.000	7. 135	-31. 128	5. 841	-1761. 703	1357. 433
1.500	7. 135	-28.034	6. 486	-1102. 154	1282. 018
2.000	7. 135	-24. 728	6. 706	-481. 966	1200. 432
2. 500	7. 135	-21. 363	6. 737	99. 528	1127. 325
3.000	7. 135	-18.006	6. 675	647. 138	1064. 891
3. 500	7. 135	-14. 733	6. 394	1110. 805	798. 191
4.000	7. 135	-11.667	5. 847	1436. 516	515. 229
4. 500	7. 135	-8. 919	5. 131	1617. 607	222. 216
5.000	7. 135	-6. 551	4. 338	1670. 924	2. 320
5. 500	7. 135	-4. 583	3. 542	1630. 246	-155. 666
6.000	7. 135	-3.000	2. 797	1523. 691	-263. 020
6. 500	7. 135	-1. 771	2. 134	1388. 625	-276. 109
7. 000	7. 135	-0.850	1. 562	1248. 574	-283. 249
7. 450	7. 135	-0. 246	1. 128	1118.979	-291. 218
7. 900	7. 135	0.179	0. 773	987. 624	-291. 520
8. 350	7. 135	0.463	0.496	857. 399	-286. 549
8.800	7. 135	0.640	0. 296	730. 238	-278. 171
9.300	7. 135	0.752	0. 160	596. 839	-254. 799
9.800	7. 135	0.809	0.071	475. 894	-228. 669
10.300	7. 135	0.826	0.000	368. 370	-201. 334
10.800	7. 135	0.812	-0. 053	274. 563	-173. 968
11. 300	7. 135	0. 776	-0. 092	194. 256	-147. 466
11. 800	7. 135	0. 723	-0. 119	126. 844	-122. 478
12. 300	7. 135	0. 659	-0. 135	71. 451	-99. 451
12.800	7. 135	0.589	-0. 143	27. 020	-78. 660
13. 300	7. 135	0.517	-0. 145	-7. 606	-60. 244
13.800	7. 135	0.445	-0. 141	-33. 624	-44. 228
14. 300	7. 135	0.376	-0. 134	-52. 224	-30. 555
14. 800	7. 135	0.312	-0. 124	-64. 550	-19. 106
15. 300	7. 135	0. 253	-0. 112	-71. 674	-9. 718
15. 800	7. 135	0. 200	-0. 100	-74. 581	-2. 203
16. 300	7. 135	0. 153	-0. 088	-74. 373	2. 808
16. 800	7. 135	0. 112	-0. 076	-71. 982	6. 566
17. 300	7. 135	0.077	-0.064	-67. 987	9. 245
17.800	7. 135	0.048	-0.053	-62. 888	11. 013
18.300	7. 135	0.024	-0.043	-57. 100	12. 025
18.800	7. 135	0.005	-0.034	-50. 965	12. 424
19. 300	7. 135	-0.010	-0. 026	-44. 757	12. 338
19. 800	7. 135	-0.021	-0. 019	-38. 689	11. 883
20. 300	7. 135	-0.029	-0. 013	-32. 920	11. 156
20. 800	7. 135	-0.034	-0.008	-27. 563	10. 245
21. 300	7. 135	-0. 037	-0.004	-22. 694	9. 220
21. 800	7. 135	-0. 038	0.000	-18. 352	8. 142
22. 300	7. 135	-0.038	0.002	-14. 552	7. 059
22. 800	7. 135	-0.036	0.005	-11. 287	6. 011
23. 300	7. 135	-0.033	0.006	-8. 530	5. 028
23. 800	7. 135	-0.030	0.008	-6. 244	4. 135
24. 300	7. 135	-0. 026	0.008	-4. 378	3. 348
24. 800	7. 135	-0. 021	0.009	-2. 875	2. 681
25. 300	7. 135	-0.017	0.009	-1.675	2. 141
25. 800	7. 135	-0.012	0. 010	-0.712	1. 736
26. 200	7. 135	-0.008	0. 010	-0. 219	0. 791
26. 600	7. 135	-0.004	0. 010	-0.030	0. 212
27. 000	7. 135	0.001	0. 010	0.000	0.000
21.000	1. 100	0.000	0.010	0.000	0.000

(5) せん断力の制限値の算出 ・ 杭基礎に対するせん断力の制限値

) DEFICE ON) D	でん <u>断力の制度値</u> 項目	記号	単位	
	杭径	D	mm	1200.0
Net	部林幅	b	mm	1063. 472
断面寸法	部材高	h	mm	1063, 472
	有効高	d	mm	936. 879
市山十二十二十八十八万	軸方向鉄筋量	As	mm ²	22237. 6
軸方向鉄筋	軸方向引張鉄筋比	p _t	%	1. 116
	基本値	τς	N/mm ²	0. 350
コンクリートが	部材高dに関する補正係数	Ce	_	1. 03607
負担できる平均	鉄筋比ptに関する補正係数	Cpt	-	1. 50000
せん断応力度	せん断スパン比による割増係数	$c_{ m dc}$	_	1. 00000
	補正係数(荷重の正負交番作用)	C _c	_	1. 00000
	τ _c • C _e • C _{pt} • C _{dc} • C _c	τ r	N/mm ²	0. 54394
	補正係数	k	_	1. 30
	k • τ _r • b • d		kN/本	704. 53
	発生せん断力	S_d	kN/本	1174. 63
	発生軸力(死荷重作用時)	N	kN/本	1514. 62
	発生曲げモーメント	$ m M_d$	kN·m/本	3944. 39
	断面積	A_{c}	m ²	1. 13097
コンクリートが	断面二次モーメント	$I_{\rm c}$	m ⁴	0. 10179
負担できるせん	図心より引張縁までの距離	у	m	0.600
断力	軸方向力によるコンクリートの 応力度が部材引張縁で0となる 曲げモーメント	$M_{\rm O}$	kN·m/本	227. 19
	S _d • M ₀ /M _d	1	kN/本	67. 66
	最大のせん断力と等価なせん断 応力度	τ _{cmax}	N/mm²	1. 20
	τ _{cmax} • b • d	ı	kN/本	1195. 61
	特性値	S_c	kN/本	772. 19
	鉄筋の断面積	$A_{\rm w}$	mm ²	397. 2
せん断補強鉄筋	鉄筋の間隔	S	mm	150
	鉄筋の降伏強度の特性値	σ_{sy}	N/mm^2	345.00
せん断補強鉄筋	せん断スパン比による低減係数	$c_{ m ds}$	_	1.00
が負担できる	補正係数	k	_	1.30
せん断力	特性値	S_s	kN/本	967. 53
	調査·解析係数	ξ1	_	1.00
斜引張破壊に対	部材・構造係数	ξ2	_	0.85
するせん断力の	抵抗係数(コンクリート)	$\Phi_{ m uc}$	_	0.95
制限値	抵抗係数(せん断補強鉄筋)	$\Phi_{ m us}$	_	0.95
	杭一本あたりの制限値	S_{usd}	kN/本	1404. 83
コンクリートの	コンクリートが負担できる 平均せん断応力度の最大値	τ _{rmax}	N/mm²	3. 20
圧壊に対する	せん断耐力の特性値	Sucw	kN/本	3188.30
せん断力の制限値	調査・解析係数	ξ1	_	1.00
	部材・構造係数と抵抗係数の積	$\xi_2\Phi_{ucw}$	_	1.00
	杭一本あたりの制限値	Sucd	kN/本	3188. 30

なお、杭基礎に対するせん断力の制限値は、第 1 断面の杭本数分とする。 Σ S_{usd} = S_{usd} · n = 1404.83 × 12 = 16857.92 (kN) Σ S_{ucd} = S_{ucd} · n = 3188.30 × 12 = 38259.60 (kN)

(6) 杭基礎照査結果

 α_i =1.0に達するまでに基礎が降伏しているため、応答塑性率の照査を行い、応答変位時にて杭基礎に対する照査を行う。

• 杭頭断面力

杭		杭頭	支持力	杭頭	杭頭	杭頭降伏	最大	最大曲げ位置
列	本数	反力	上限値	せん断力	モーメント	モーメント	モーメント	降伏モーメント
No		$P_N(kN)$	$P_{NU}(kN)$	S (kN)	M_t (kN • m)	M _{vt} (kN • m)	M_{max} (kN • m)	M_v (kN • m)
1	4	-1571. 98	8876.88	1017. 10	-2520. 17	2191. 76	-2520. 17	2191. 76
2	4	1591. 21	8876.88	1017. 11	-2520. 19	2191. 76	-2520. 19	2191. 76
3	4	4751.67	8876.88	1489.69	-3186. 48	2650.85	-3186.48	2650. 85

・せん断力の照査 ∑S = 14095.61 (kN) ≦ ∑S_{usd} = 16857.92 (kN) ---- OK ≦ ∑S_{ucd} = 38259.60 (kN) ---- OK

応答塑性率の照査

 $\mu_{Ar} = 1.3915$ $\leq \mu_{AL} = 3.0000$ ---- 0K

ゆえに、基礎は耐力を有する。