目 次

1 照査結果一覧表	1
2 設計条件	2
2-1 設計条件	2
2-2 地盤条件	
2-3 杭基礎条件	2
3 杭基礎の地震時保有水平耐力照査	4
3-1 杭の諸元および杭配置	4
3-2 荷重集計	
3-2-1 橋軸方向の荷重集計	5
3-3 杭の軸方向の抵抗特性	
3-3-1 杭の極限支持力・極限引抜き抵抗力の計算	8
3-3-2 杭の軸方向ばね定数	15
3-4 杭の軸直角方向の抵抗特性	16
3-4-1 水平方向地盤反力係数	
3-4-2 水平地盤反力度の上限値	19
3-5 Μ-φ曲線	21
3-5-1 杭断面性能	21
3-5-2 杭体の曲げモーメント~曲率関係	22
3-6 照査結果	23
3-6-1 橋軸方向(タイプⅡ・液状化地盤・浮力なし)	23

照査結果一覧表

(1) 橋軸方向

1) 不安定となる地盤の影響がある場合

荷重ケース		単位	タイプ I +浮力なし	タイプI+浮力あり	タイプⅡ+浮力なし	タイプⅡ+浮力あり
照査方法		-	照査なし	照査なし	応答塑性率による	照査なし
水平震度	khce khA	_			0. 56 0. 56	
	Mmax (*1) (My)	kN·m/本 kN·m/本				
耐力	Mmax (*2) (My)	kN·m/本 kN·m/本				
	PN (PNU)	kN/本 kN/本				
	khyA	-			0.44	
応答塑性率	状態	_			杭体降伏	
心合型性学	μ Ar (μ AL)	_			1. 2823 3. 0000	
	δAr	m			0.0441	
せん断耐力	S (Ps)	kN kN			13881. 15 15804. 53	

2 設計条件

2-1 設計条件

(1) 構造物種類 橋台

(2) 適用基準 道路橋示方書(平成24年)

(3) 基礎工形式 場所打ち杭 ϕ 1200 (mm) L = 27.100 (m) n = 12 (本)

(4) 設計水平震度

	タイプ I	タイプⅡ		
地域区分	C地域			
地盤種別	I 種地盤			
地盤面における設計水平震度(橋軸方向)	0.400	0. 560		

2-2 地盤条件

(1) 地盤標高および水位 標高記号:GL

計画地表面	面標高	m	0.000
ボーリンク	ブ上端標高	m	0.000
フーチング	ブ下面標高	m	-2. 400
支持設定	地下水位標高	m	-2. 400

(2) 突出長

通常時(低減なし) 0.000 m タイプ I 低減時 0.000 m タイプ II 低減時 0.000 m

2-3 杭基礎条件

(1) 杭基礎条件

杭種場所打ち杭杭頭条件剛結杭先端条件フリー施工方法場所打ち杭工法杭とフーチングの接合方法方法B

(2) 杭断面諸元

杭長 27.100 (m)杭径 1200.0 (mm) 杭の埋込み長 0.100 (m) 2.50×10^{4} ヤング係数 (N/mm^2) コンクリートの呼び強度 30.0 (N/mm^2) コンクリートの設計基準強度 24.0 (N/mm^2) コンクリートの許容圧縮応力度 コンクリートの許容せん断応力度(常時) コンクリートの許容せん断応力度(常時) コンクリートの許容せん断応力度(地震時) 8.000 (N/mm^2) 0.230 (N/mm^2) 0.350 (N/mm^2) 主鉄筋 鉄筋の材質 SD345 鉄筋の許容引張応力度(死荷重時) 鉄筋の許容引張応力度(一般部材) 100.0 (N/mm^2) 180.0 (N/mm^2) 鉄筋の許容引張応力度(水中部材) 160.0 (N/mm^2) 鉄筋の許容引張応力度(土中部材) 鉄筋の許容引張応力度(地震時の基本値) 180.0 (N/mm^2) 200.0 (N/mm^2) 鉄筋の許容圧縮応力度 200.0 (N/mm^2) 鉄筋の降伏点 345.0 (N/mm^2) 主鉄筋データ

	かぶり	鉄筋径	本数	鉄筋量
	(mm)			(mm ²)
1層目	150.0	D32	28.0	22237.6

帯鉄筋

鉄筋の材質	SD345	
鉄筋の許容引張応力度(死荷重時)	100.0	(N/mm^2)
鉄筋の許容引張応力度(一般部材)	180.0	(N/mm^2)
鉄筋の許容引張応力度(水中部材)	160.0	(N/mm^2)
鉄筋の許容引張応力度(土中部材)	180. 0	(N/mm^2)
鉄筋の許容引張応力度(地震時の基	本値) 200.0	(N/mm^2)
鉄筋の許容圧縮応力度	200.0	(N/mm^2)
鉄筋の降伏点	345. 0	(N/mm^2)

帯鉄筋データ

鉄筋径	ピッチ	本数	鉄筋量
	(mm)		(mm ²)
D16	150.0	2.0	397. 2

横拘<u>束鉄筋デー</u>タ

断面積	ピッチ	有効長
(mm^2)	(mm)	(mm ²)
198.600	150.0	700. 0

(3) ボーリングデータ

地盤反力係数の推定係数 α (常時) 1 (地震時) 2

	層厚	層上面標高	土質名	N値	γ	γ'	φ	С	E0	周面摩擦力	低減係数DE
No	(m)	(m)			(kN/m^3)	(kN/m^3)	(度)	(kN/m^2)	(kN/m^2)		タイプⅡ
1	2.400	GL 0.000	砂質土	4.000	18.00	9.00	25. 0	0.00	11200.0	考慮する	低減無
2	3.000	GL -2.400	砂質土	4.000	18.00	9.00	25. 0	0.00	11200.0	考慮する	1/3
3	3.000	GL -5.400	砂質土	18.000	18.00	9.00	31. 0	0.00	50400.0	考慮する	2/3
4	1.000	GL -8.400	砂質土	7.000	18.00	9.00	25. 0	0.00	19600.0	考慮する	1/3
5	1.800	GL -9.400	砂質土	7.000	18.00	9.00	25. 0	0.00	19600.0	考慮する	低減無
6	7.000	GL -11. 200	粘性土	14.000	18.00	9.00	0.0	55.00	39200.0	考慮する	低減無
7	10.000	GL -18. 200	砂質土	12.000	18.00	9.00	29.0	0.00	33600.0	考慮する	低減無
8	3.000	GL -28. 200	砂質土	50.000	19.00	10.00	42.0	0.00	140000.0	考慮する	低減無

水平方向地盤反力係数(KH) 周面摩擦力度(fi) 低減する 低減する

3 杭基礎の地震時保有水平耐力照査

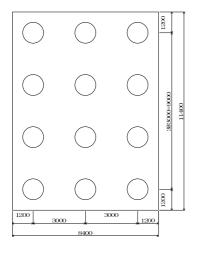
3-1 杭の諸元および杭配置

(1) 杭の諸元

杭材

場所打ち杭 φ1200.0 (mm) コンクリートの呼び強度 : 30.0 (N/mm²) コンクリートの設計基準強度: σ ck = 24.0 (N/mm²) 主鉄筋材質 : SD345 帯鉄筋材質 : SD345 かぶり 150.0 mm D32× 28.0本 As= 22237.6 mm²

配筋


杭 長 杭の埋込み長 27. 100 (m) 0. 100 (m) L = Lt=

杭頭条件

剛結 フリー 場所打ち杭工法 杭先端条件 施工方法

支持条件 支持杭

(2) 杭配置

3-2 荷重集計

3-2-1 橋軸方向の荷重集計

- (1) タイプⅡ・液状化地盤・浮力なし
 - 1) 主働土圧係数の計算

 $\phi_{\rm res} = 30^{\circ} \quad 0'$

 $\phi_{\text{peak}} = 45^{\circ} \quad 0'$

 $\theta = 0^{\circ} 0'$

 α = 0° 0'

以上の条件より地震時主働土圧係数は次式により算定する。

 $K_{A2} = 0.26000 + 0.97000 \cdot k_h = 0.26000 + 0.97000 \times 0.56 = 0.80320$

ここに、

φ res : 土のせん断抵抗角の残留強度 (度) φ peak : 土のせん断抵抗角のピーク強度 (度) θ : 土圧作用面と鉛直面とのなす角 (度) α : 地表面と水平面とのなす角 (度)

kh :地震時土圧の算出に用いる設計水平震度

2) 裏込め土砂による土圧

 χ = 19.00 (kN/m³) 土圧作用面の壁面摩擦角 δ = 15° 0′ 奥行き方向土圧作用幅 δ L = 12.000 (m)

水平力

PHEQ =
$$\frac{1}{2} \cdot \gamma \cdot K_{\text{A2}} \cdot H_{1}^{2} \cdot \cos \delta \cdot L$$

= $\frac{1}{2} \times 19.00 \times 0.80320 \times 8.000^{2} \times \cos(15^{\circ} 0') \times 12.000$
= 5660.47 (kN)

作用高さ

$$YEQ = 2.667 (m)$$

鉛直力

PVEQ =
$$\frac{1}{2} \cdot \gamma \cdot K_{M2} \cdot H_1^2 \cdot \sin \delta \cdot L$$

= $\frac{1}{2} \times 19.00 \times 0.80320 \times 8.000^2 \times \sin(15^{\circ} 0') \times 12.000$
= 1516.72 (kN)

作用位置

$$XEQ = 8.500 (m)$$

3) 荷重集計

a) 死荷重時

鉛直力 Vo = Rd + Wp + Wf + Wb + Wg + PVa= 2500.000 + 2853.000 + 4845.000 + 6621.000 + 0.000 + 490.970 = 17309.970 (kN)

水平力 Ho = PHa = 1832.320 (kN)

モーメント Mo = Mh + PHa・ya - PVa・(xa - Px) $= 0.000 + 1832.320 \times 2.667 - 490.970 \times (8.500 - 4.200)$ $= 2775,626 \text{ (kN} \cdot \text{m)}$

b) 主働土圧増加分

鉛直土圧 Δ PVEQ = PVEQ - PVa = 1516.718 - 490.970 = 1025.748 (kN)

作用位置 Δ XEQ = (PVEQ·XEQ - PVa·xa)/(PVEQ - PVa) = $(1516.718 \times 8.500 - 490.970 \times 8.500)/(1516.718 - 490.970)$ = 8.500 (m)

水平土圧 Δ PHEQ = PHEQ - PHa = 5660.468 - 1832.320 = 3828.148 (kN)

作用高さ Δ YEQ = (PHEQ·YEQ - PHa·ya)/(PHEQ - PHa) = $(5660.468 \times 2.667 - 1832.320 \times 2.667)/(5660.468 - 1832.320)$ = 2.667 (m)

c) 地震時

鉛直力 $V = V_0 + \alpha i \cdot \Delta PVEQ$ = 17309.970 + α i·1025.748 (kN)

= Ho + α i·{khce·Wu + khA·(Wp + Wf + Wb) + Δ PHEQ} = 1832.320 + α i·{0.56× 3394.000 水平力 + 0.56×(2853.000 + 4845.000 + 6621.000) + 3828.148} = 1832.320 + α i·13747.428 (kN)

モーメント M = Mo + $\alpha i \cdot \{ khce \cdot Wu \cdot yu + khA \cdot (Wp \cdot yp + Wf \cdot yf + Wb \cdot yb) \}$ + Δ PHEQ· Δ YEQ - Δ PVEQ· (Δ XEQ - Px)} = 2775. 626 + α i· $\{0.56 \times 3394.000 \times 5.600$ + 0. $56 \times (2853.000 \times 4.350 + 4845.000 \times 0.950 + 6621.000 \times 5.200)$ + 3828. 148 × 2. 667 - 1025. 748 × (8. 500 - 4. 200)} = 2775. 626 + α i·45248. 453 (kN·m)

ここに、

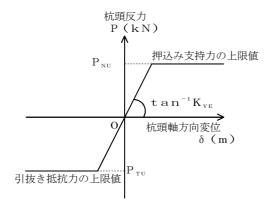
Rd上部工反力 (kN) Wp 橋台自重(kN) Ϋ́р 橋台自重の重心高さ(m)

フーチング自重(kN) フーチング自重の作用高さ(m) Wf Υf 上部構造重量(kN) Wu

上部構造重量の作用高さ(m) Yu 裏込め土重量 (kN) Wb Yb 裏込め土重量の作用高さ (m) 上載土重量 (kN) Wg Mh

偏心モーメント (kN·m) 橋台の設計に用いる上部工設計水平震度 khce 橋台基礎の照査に用いる設計水平震度 k hA 荷重載荷位置(フーチング前面より) (m)

主働土圧鉛直成分(kN) 主働土圧水平成分(kN) PVa РНа


死荷重土圧の載荷作用位置(フーチング前面より) (m) \mathbf{x} a 死荷重土圧の載荷作用高さ(フーチング下面より) (m) va

PVEQ PHEQ

 ・ 地震動による主働土圧鉛直成分(kN)
 ・ 地震動による主働土圧水平成分(kN)
 ・ 地震時土圧の載荷作用位置(フーチング前面より)(m)
 ・ 地震時土圧の載荷作用高さ(フーチング下面より)(m) XEQ YEQ

3-3 杭の軸方向の抵抗特性

杭の軸方向の抵抗特性は以下のモデルで算出するものとする。

3-3-1 杭の極限支持力・極限引抜き抵抗力の計算

(1) 計算式

押込み支持力の上限値PNU および引抜き抵抗力の上限値PTU は次式により算出するものとする。

PNU = RuPTU = Pu+W

ここに、 PNU:押込み支持力の上限値(kN) PTU:引抜き抵抗力の上限値(kN)

Ru : 地盤から決まる杭の極限支持力 (kN) Pu : 地盤から決まる杭の極限引抜き抵抗力 (kN)

: 杭および杭内部の土の有効重量(kN)

地盤から決まる杭の極限支持力は以下の式により算出するものとする。

Ru= qd · A+U · Σ (Li · fi)

Ru:地盤から決まる杭の極限支持力(kN)

A : 杭先端面積 (m²)

qd: 杭先端における単位面積当たりの極限支持力度(kN/m²)

Ú:杭の周長 (m)

: 周面摩擦力を考慮する層の層厚 (m) Li

: 周面摩擦力を考慮する層の最大周面摩擦力度で、 下表により求める。 (kN/m²)

	場所打ち杭工法
砂質土	5N (≦200)
粘性土	cまたは10N
	(≦150)

注)N<5の軟弱粘性土層では、信頼性が乏しいので、N値による最大 周面摩擦力度を推定しない。

杭体から決まる押込み支持力の上限値は以下の式により算出するものとする。

Rpu = $0.85 \cdot \sigma ck \cdot Ac + \sigma y \cdot As$

ここに、

Rpu: 杭体から決まる押込み支持力の上限値(kN) σck: コンクリートの設計基準強度 (kN/m²)

Ac:コンクリートの断面積(m²) σy:鋼材の降伏点(kN/m²) As:鋼材の断面積 (m²)

地盤から決まる杭の極限引抜き抵抗力は以下の式により算出するものとする。

 $Pu=U \cdot \Sigma (Li \cdot fi)$

Pu:地盤から決まる杭の極限引抜き抵抗力(kN)

U:杭の周長(m) Li:周面摩擦力を考慮する層の層厚(m)

fi : 周面摩擦力を考慮する層の最大周面摩擦力度 (kN/m²)

杭体から決まる引抜き抵抗力の上限値は以下の式により算出するものとする。

 $Ppu = \sigma y \cdot As$

ここに、 Ppu:杭体から決まる引抜き抵抗力の上限値(kN) σy:鋼材の降伏点(kN/m²) As:鋼材の断面積(m²)

杭先端の極限支持力度qdの推定方法

場所打ち杭の場合は、一般に施工による地盤の乱れの影響が大きいと考え、 杭先端の極限支持力度 qd は下表に示す値とした。

地 盤 種 別	杭先端の極限支持力度(kN/m²)
砂れき層及び砂層 (N≥30)	3000
良質な砂れき層 (N≥50)	5000
粘性土 (N≥20, qu≥400 kN/m²)	3 q u
. L . L . L . L . L . L . L . L . L . L	(1 37 / 9)

ただし、qu は一軸圧縮強度(kN/m²)

- (2) 地盤条件
 - 1) 低減なし
 - a) 極限支持力計算時
 - ・周面摩擦力

層番号	標高(m)	土質	N値 「c]	fi kN/m²	Li m	Li•fi kN/m
L	▽ GL +0.000		[0]	Ki ty ili		NI VI III
1	▽ GL -2.400	砂質土				
2	(フーチング下面) ▽ GL -5.400	砂質土	4. 000	20.00	3. 000	60.00
3	▽ GL -8.400	砂質土	18. 000	90.00	3. 000	270.00
4	▽ GL -9.400	砂質土	7. 000	35. 00	1. 000	35. 00
5	▽ GL -11.200	砂質土	7. 000	35. 00	1. 800	63. 00
6	▽ GL -18. 200	粘性土	14. 000 (55. 00)	55. 00	7. 000	385. 00
7	▽ GL -28. 200	砂質土	12. 000	60.00	10.000	600.00
	(考慮範囲下端)			2	Σ	1413. 00

杭先端地盤の極限支持力度 $qd = 3000 (kN/m^2)$

b) 極限引抜き抵抗力計算時

・周面摩擦力

	/可四/字/5/7											
層番号	標	高 (m)	土質	N値	fi	Li	Li•fi					
号	⊽ GL	+0.000	上具	[c]	kN/m^2	m	kN/m					
-	V GL	+0.000										
1			砂質土									
	▽ GL	-2. 400										
2	(フーチ	ング下面)	砂質土	4. 000	20.00	3. 000	60.00					
	▽ GL	-5. 400										
3			砂質土	18. 000	90. 00	3, 000	270.00					
J	▽ GL	-8. 400	11万貝工	10.000	90.00	3.000	270.00					
1			7小斤 1.	7 000	25 00	1 000	25.00					
4	▽ GL	-9. 400	砂質土	7. 000	35. 00	1.000	35. 00					
5	▽ GL	-11. 200	砂質土	7. 000	35. 00	1.800	63. 00					
				14. 000	,							
6	▽ GL	-18. 200	粘性土	(55. 00)	55. 00	7. 000	385. 00					
-												
7	▽ GL	-28, 200	砂質土	12. 000	60.00	10.000	600.00					
-	V GL	20. 200										
		00.400			200.00	1. 200	240.00					
8	▽ GL	-29. 400	砂質土	50. 000								
	(杭	先端)			Σ		1653. 00					

2) タイプⅡ低減時

- a) 極限支持力計算時
- ・周面摩擦力

層番号	標高(m)	土質	N値	fi	Li	Li•fi
	▽ GL +0.000		[c]	kN/m²	m	kN/m
1	▽ GL -2.400	砂質土				
2	(フーチング下面) ▽ GL -5.400	砂質土	1. 333	6. 67	3. 000	20.00
3	▽ GL -8.400	砂質土	12. 000	60.00	3. 000	180.00
4	▽ GL -9.400	砂質土	2. 333	11. 67	1. 000	11. 67
5	▽ GL -11.200	砂質土	7. 000	35. 00	1. 800	63. 00
6	▽ GL -18.200	粘性土	14. 000 (55. 00)	55. 00	7. 000	385. 00
7	▽ GL -28. 200	砂質土	12. 000	60.00	10.000	600.00
	(考慮範囲下端)			Σ	Σ	1259. 67

杭先端地盤の極限支持力度 qd = 3000 (kN/m²)

b) 極限引抜き抵抗力計算時

・周面摩擦力

	4/4-1/10/03						
層番号	標	f (m)	土質	N値	fi	Li	Li•fi
号			上具	[c]	kN/m^2	m	kN/m
-	▽ GL +	+0.000					
1			砂質土				
1	▽ GL -	-2. 400	₽ KI				
	(フーチンク	下面)	1122	1 200			
2	∇ GL -	-5. 400	砂質土	1. 333	6. 67	3. 000	20.00
			71551				
3	▽ GL -	-8. 400	砂質土	12. 000	60.00	3. 000	180. 00
			TNEE	0.000	11 07	1 000	11 05
4	∇ GL -	-9. 400	砂質土	2. 333	11. 67	1. 000	11. 67
			71551				
5	▽ GL -1	11. 200	砂質土	7. 000	35. 00	1. 800	63. 00
			and the second	14. 000			
6	▽ GL -1	18. 200	粘性土	(55.00)	55. 00	7. 000	385. 00
	1		71551				
7	▽ GL -2	28. 200	砂質土	12. 000	60.00	10.000	600.00
	,						
	▽ GL -2	29. 400	砂質土		200. 00	1. 200	240. 00
8	(杭 先	(杭 先 端)		50. 000			
	/ -				Σ		1499.66
					_		ļ.,

(3) 極限支持力の計算

①地盤から決まる杭の極限支持力

$$Ru = qd \cdot A + U \cdot \Sigma \text{ (Li } \cdot fi)$$

低減なし

$$Ru = qd \cdot A + U \cdot \Sigma (Li \cdot fi)$$

= 3000.00 × 1.13097 + 3.7699 × 1413.00 = 8719.80 (kN)

タイプⅡ低減時

$$Ru = qd \cdot A + U \cdot \Sigma (Li \cdot fi)$$

= 3000.00 × 1.13097 + 3.7699 × 1259.67 = 8141.75 (kN)

②杭体から決まる押込み支持力の上限値

Rpu =
$$0.85 \cdot \sigma \text{ ck} \cdot \text{Ac} + \sigma \text{ y} \cdot \text{As}$$

= $0.85 \times 24000.00 \times 1.13097 + 345000.00 \times 0.02224 = 30743.83$ (kN)

③極限支持力の採用値

低減なし

タイプⅡ低減時

押込み支持力の上限値 PNU = min(Ru, Rpu)

$$= \min(8141.75, 30743.83) = 8141.75 \text{ (kN)}$$

- (4) 極限引抜き抵抗力の計算
 - ①地盤から決まる杭の極限引抜き抵抗力

$$Pu + W = U \cdot \Sigma (Li \cdot fi) + W$$

低減なし

$$Pu + W = 3.7699 \times 1653.00 + 442.78 = 6674.43$$
 (kN)

タイプⅡ低減時

$$Pu + W = 3.7699 \times 1499.66 + 442.78 = 6096.38 (kN)$$

②杭体から決まる引抜き抵抗力の上限値

Ppu =
$$\sigma y \cdot As$$

= 345000.00 × 0.02224 = 7671.97 (kN)

③極限引抜き抵抗力の採用値

通常時 (低減なし)

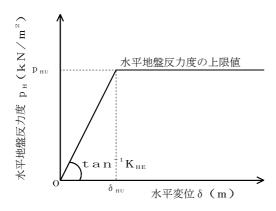
$$PTU = min(Pu+W, Ppu)$$

= min(6674.43, 7671.97) = 6674.43 (kN)

タイプⅡ低減時

引抜き抵抗力の上限値

3-3-2 杭の軸方向ばね定数


$$KVE = a \cdot \frac{Ap \cdot Ep}{L}$$

$$= 0.547 \times \frac{1.130973 \times 25000000}{27.000}$$

$$= 573340.6 (kN/m)$$
ここに、
 $KVE : 杭の軸方向ばね定数 (kN/m)$
 $a : 補正係数$
※ 場所打ち杭
 $a = 0.031 (L/D) - 0.150$
 $= 0.031 \times (27.000 / 1.200) - 0.150 = 0.547$
 $Ap : 杭の純断面積 (m²)$
 $Ep : 杭体のヤング係数 (kN/m²)$
 $L : 杭の根入れ長さ (m)$
 $D : 杭径 (m)$

3-4 杭の軸直角方向の抵抗特性

杭の軸直角方向の抵抗特性は、地震時保有水平耐力法に用いる水平方向地盤反力 係数kHE を初期勾配とし、水平地盤反力度の上限値pHU を有する弾塑性型として モデル化する。

水平地盤反力度~水平変位

3-4-1 水平方向地盤反力係数

杭の軸直角方向ばね定数の計算は多層地盤を考慮し、以下のように算出する。

(1) 水平方向地盤反力係数の計算

$$\mathbf{k}\;\mathbf{HE}\;=\;\;\eta\;\mathbf{k}\boldsymbol{\cdot}\;\alpha\;\mathbf{k}\boldsymbol{\cdot}\;\mathbf{k}\;\mathbf{H}$$

ここに、 kHE:地震時保有水平耐力に用いる水平方向地盤反力係数(kN/m³)

 η k : 群杭効果を考慮した水平方向地盤反力係数の補正係数 η k=2/3 α k : 単杭における水平方向地盤反力係数の上限値の補正係数 α k=1.5 kH : 地震時の水平方向地盤反力係数 (kN/m^3)

$$k H = k H0 \left(\frac{B H}{0.3} \right)^{-3/4}$$

kHO: 直径0.3mの剛体円板による平板載荷試験の値に相当する水平方向地盤反力係数(kN/m³)

$$k H0 = \frac{1}{0.3} \cdot \alpha \cdot E 0$$

BH : 基礎の換算載荷幅 (m)

$$BH = \sqrt{\frac{D}{\beta}}$$

: 杭径 (m)

: 基礎の特性値 (m-1)

$$\beta = \sqrt[4]{\frac{\text{k H} \cdot \text{D}}{4 \text{ E I}}}$$

: 地盤反力係数推定に用いる係数

常時 $\alpha = 1$ 地震時 $\alpha = 2$ E0 : 地盤変形係数 (kN/m²) EI:基礎の曲げ剛性(kN·m²)

1) 換算載荷幅BHの計算

BH算出上の要点は、

・BHを求める際のkHは常時の値とする。 ・深さ方向に地層が変化する場合でも、BHを算出する際のkH は設計地盤面から $1/\beta$ の深さまでの平均値とする。また、各層のkH算出時もこのBHを用いる。

D 1. 200 (m) 25000000 (kN/m²) 0. 10178762 (m⁴) ヤング係数 断面二次モーメント Ε E I

 $1/\beta=4.669$ (m) ($\beta=0.21419$ (m $^{-1}$))と仮定する \rightarrow 平均E0=25211.8 (kN/m 2)

$$BH = \sqrt{\frac{1.200}{0.21419}} = 2.367 \text{ (m)}$$

$$\text{k H=} \quad \frac{1}{\text{0.3}} \quad \times \text{ 1.0} \ \times \ 25211.8 \ \times \ \left(\ \frac{2.367}{\text{0.3}} \ \right)^{\text{-3/4}} = \ 17851.6 \ \text{(kN/m}^{\text{3})}$$

となり、 β を計算すると下記となり、仮定した β に一致する。

$$\beta = \sqrt[4]{\frac{17851.6 \times 1.200}{4 \times 25000000 \times 0.10178762}} = 0.21419 \text{ (m}^{-1})$$

以上により、換算載荷幅BHは、BH= 2.367 (m) となる。

2) 各層の水平方向地盤反力係数の計算

多層地盤を考慮するため、先に計算したBHを用いて、各地層ごとに 水平方向地盤反力係数を算出する。

タイプⅡ低減時

No	層厚	変形係数 E ₀	k _{H0}	$k_{\rm H} (kN/m^3)$		$\eta_k \cdot \alpha_k$	k _{HE} (k	N/m³)
	(m)	(kN/m ²)	(kN/m^3)	低減前	低減後		低減前	低減後
1	3.000	11200.0	74666. 7	15860.7	5286. 9	1.000	15860.7	5286. 9
2	3.000	50400.0	336000.0	71372. 9	47582.0	1.000	71372. 9	47582.0
3	1.000	19600.0	130666.7	27756. 1	9252. 0	1.000	27756. 1	9252. 0
4	1.800	19600.0	130666.7	27756. 1	27756. 1	1.000	27756. 1	27756. 1
5	7. 000	39200.0	261333.3	55512. 3	55512. 3	1.000	55512.3	55512. 3
6	10.000	33600.0	224000.0	47582. 0	47582.0	1.000	47582.0	47582.0
7	1. 200	140000.0	933333. 3	198258. 2	198258. 2	1.000	198258. 2	198258. 2

3-4-2 水平地盤反力度の上限値

水平地盤反力度の上限値は以下の式にて算出する。

$$pHU = \eta p \cdot \alpha p \cdot pu$$

ここに、 pHU:水平地盤反力度の上限値(kN/m²)

αp:単杭における水平地盤反力度の上限値の補正係数

本 : 平元によりるホール盛火力度の上版値の補止係数 粘性土地盤 αp=1.5(N>2), 1.0(N≦2) 砂質地盤 αp=3.0 η p : 群抗効果を考慮した水平地盤反力度の上限値の補正係数

粘性土地盤 $\eta p=1.0$

砂質地盤 $\eta p \cdot \alpha p =$ 荷重載荷直角方向の杭の中心間隔/杭径 ($\leq \alpha p$) pu : 地震時の受働土圧強度 (kN/m^2)

$$pu = KEP \cdot (\gamma i \cdot h i + q) + 2 c \sqrt{KEP}$$

KEP: 地震時の受働土圧係数

$$\label{eq:KEP} \text{KEP} = \frac{\cos^2\phi}{\cos\delta\,E\boldsymbol{\cdot}\left\{1\text{-}\sqrt{\frac{\sin(\phi-\delta\,E)\boldsymbol{\cdot}\,\sin(\phi+\alpha\,)}{\cos\delta\,E\boldsymbol{\cdot}\,\cos\alpha}}\right\}^2}$$

: 土の単位体積重量 (kN/m³) : 着目土層の層厚 (m)

: 土の粘着力 (kN/m²)

 \mathbf{q} : 着目土層上端までの上載荷重(\mathbf{E} \mathbf{y} \mathbf{i} · \mathbf{h} \mathbf{i}) \mathbf{k} · \mathbf{k} ·

: 地表面と水平面のなす角度(度)

ただし、砂質地盤における最前列以外の杭については、水平地盤反力度の上限値 pHU を 最前列の値の1/2とする。

(1) 橋軸方向

1) 低減なし

上載士

No	層厚	標高	土質名	単位重量	上載荷重
1	h			γ	q
	(m)	(m)		(kN/m^3)	(kN/m ²)
1	2. 400	GL +0.000	砂質土	18.00	0.00
		GL -2.400			43. 20

No	層厚	標高	土質名	単位重量	上載荷重	粘着力	φ	KEP	土圧強度	1列目	2列目以降
	h			γ	q	С	δΕ	η р • α р	рu	地盤反力度	地盤反力度
	(m)	(m)		(kN/m^3)	(kN/m^2)	(kN/m^2)	(度)		(kN/m ²)	pHU(kN/m²)	pHU(kN/m²)
2	3.000	GL -2.400	砂質土	9.00	43. 20	0.00	25. 0	2. 767	119. 53	298. 83	149. 42
		GL -5.400			70. 20		-4. 167	2. 500	194. 24	485. 60	242.80
3	3.000	GL -5.400	砂質土	9.00	70. 20	0.00	31. 0	3. 683	258. 54	646. 34	323. 17
		GL -8.400			97. 20		-5. 167	2.500	357. 97	894. 93	447. 47
4	1.000	GL -8.400	砂質土	9.00	97. 20	0.00	25. 0	2. 767	268. 95	672. 37	336. 19
		GL -9.400			106. 20		-4. 167	2. 500	293. 85	734. 63	367. 32
5	1.800	GL -9.400	砂質土	9.00	106. 20	0.00	25. 0	2. 767	293. 85	734. 63	367. 32
		GL -11.200			122. 40		-4. 167	2. 500	338. 68	846. 69	423. 35
6	7.000	GL -11.200	粘性土	9.00	122.40	55.00	0.0	1.000	232. 40	348.60	348.60
		GL -18.200			185. 40		0.000	1.500	295. 40	443. 10	443. 10
7	10.000	GL -18.200	砂質土	9.00	185. 40	0.00	29. 0	3. 339	618. 98	1547. 44	773. 72
		GL -28.200			275.40		-4.833	2.500	919. 45	2298. 63	1149. 31
8	1. 200	GL -28.200	砂質土	10.00	275. 40	0.00	42.0	6. 769	1864. 21	4660. 51	2330. 26
		GL -29.400			287.40		-7.000	2.500	1945. 43	4863. 58	2431. 79

2) タイプⅡ低減時

上載土

<u> </u>					
No	層厚	標高	土質名	単位重量	上載荷重
	h			γ	q
	(m)	(m)		(kN/m^3)	(kN/m^2)
1	2. 400	GL +0.000	砂質土	18.00	0.00
		GL -2.400			43. 20

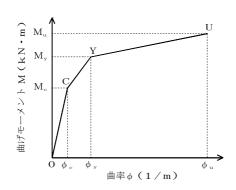
No	層厚	標高	土質名	単位重量	上載荷重	粘着力	φ	KEP	土圧強度	1列目	2列目以降
	h			γ	q	С	δΕ	ηρ• αρ	рu	地盤反力度	地盤反力度
	(m)	(m)		(kN/m^3)	(kN/m^2)	(kN/m^2)	(度)		(kN/m^2)	p HU (kN/m²)	pHU(kN/m²)
2	3.000	GL -2.400	砂質土	9.00	43. 20	0.00	25. 0	2. 767	119. 53	99. 61	49.81
		GL -5.400			70. 20		-4. 167	2. 500	194. 24	161.87	80.93
3	3.000	GL -5.400	砂質土	9.00	70. 20	0.00	31.0	3. 683	258. 54	430.89	215. 45
		GL -8.400			97. 20		-5. 167	2. 500	357. 97	596.62	298. 31
4	1.000	GL -8.400	砂質土	9.00	97. 20	0.00	25. 0	2. 767	268. 95	224. 12	112.06
		GL -9.400			106. 20		-4. 167	2. 500	293. 85	244. 88	122. 44
5	1.800	GL -9.400	砂質土	9.00	106. 20	0.00	25. 0	2. 767	293. 85	734. 63	367. 32
		GL -11.200			122.40		-4. 167	2. 500	338.68	846.69	423. 35
6	7.000	GL -11.200	粘性土	9.00	122.40	55.00	0.0	1.000	232. 40	348.60	348.60
		GL -18.200			185. 40		0.000	1.500	295. 40	443. 10	443. 10
7	10.000	GL -18.200	砂質土	9.00	185. 40	0.00	29. 0	3. 339	618. 98	1547. 44	773. 72
		GL -28.200			275. 40		-4.833	2. 500	919. 45	2298.63	1149.31
8	1. 200	GL -28.200	砂質土	10.00	275. 40	0.00	42.0	6. 769	1864. 21	4660. 51	2330. 26
		GL -29.400			287.40		-7.000	2. 500	1945. 43	4863. 58	2431. 79

3-5 M-φ曲線

3-5-1 杭断面性能

・主鉄筋の断面諸条件 <u>杭径 1200.0 mm</u> <u>鉄筋材質 SD345</u> 降伏点 345.0 N/mm²

フレロコ	<u>. 1200.0 m</u>	11	<i>川</i> // 貝 、	UPUTU	サレヘル	1 0 TO. O T	V/ 11IIII	
No	区間長	段番号	かぶり	鉄筋径	本数	鉄筋量	換算断面積	換算断面二次
	(m)		(mm)			(mm^2)	(mm ²)	(mm^4)
1	27. 100	1段目	150.0	D32	28.0	22237.6	1.3089×10^{6}	1. 19800×10 ¹¹
		2段目						
		3段目						


・帯鉄筋、横拘束鉄筋の断面諸条件 抗径 1200.0 mm 鉄筋材質 SD345 降伏点 345.0 N/mm²

No	区間長		帯	鉄筋			横拘束鉄筋			
		径	ピッチ	本数	断面積	ピッチ	断面積			
	(m)	(mm)	(mm)		(mm^2)	(mm)	(mm)	(mm^2)		
1	27. 100	D16	150.0	2.0	397. 2	150.0	700.0	198.600		

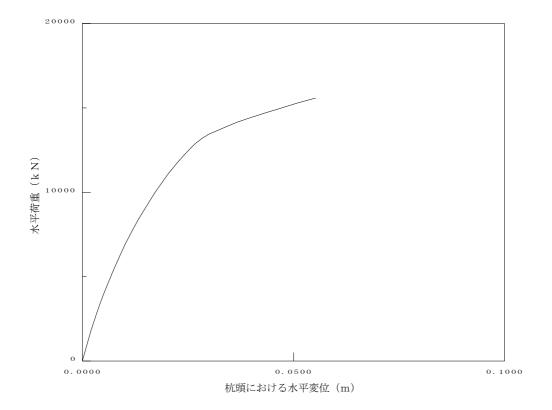
3-5-2 杭体の曲げモーメント〜曲率関係

(1) 橋軸方向

1) タイプⅡ・浮力なし

 $M-\phi$ 軸力 Pn = 0.00 kN

No	区間長	深さ	ひひ割れ時		降伏甲	导	終局時		
			фс Мс		φу	My	φu	Mu	
	(m)	(m)	(1/m)	(kN⋅m)	(1/m)	(kN⋅m)	(1/m)	(kN⋅m)	
1	27. 100	27. 100	1. 276×10^{-4}	382. 10	2.664×10^{-3}	2191.76	3.282×10^{-2}	3419.01	


 $M-\phi$ 軸力 Pn = 1442.50 kN

ſ	No	区間長	深さ	ひび割る	h時	降伏甲	诗	終局時		
				φс	Мс	фу	My	φu	Mu	
		(m)	(m)	(1/m)	(kN⋅m)	(1/m)	(kN⋅m)	(1/m)	(kN⋅m)	
- [1	27 100	27 100	2 011 × 10 ⁻⁴	602 15	2 903 × 10-3	2629 65	2 889 × 10-2	3920 25	

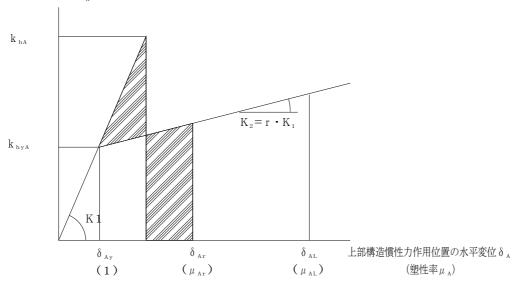
3-6 照査結果

3-6-1 橋軸方向(タイプⅡ・液状化地盤・浮力なし)

(1) 荷重-変位曲線

基礎の降伏水平震度 khyA = 0.44 降伏時の抗頭変位 δ Ay = 0.0253 m 降伏時の抗頭回転角 ϕ Ay = 1.6205×10^{-3} rad

(2) 荷重-変位曲線詳細


No	αί	水平 震度	水平力 (kN)	杭頭変位 (m)	回転変位 (×10 ⁻³ rad)	水平変位 (m)	TYPE	状 態
1	0.0000	0.000	1832. 32	0.0021	0. 1744	0.0031	L	死荷重が載荷された
2	0.0054	0.003	1907. 21	0.0022	0. 1844	0.0032		2列目の杭がひび割れた
3	0.0060	0.003	1915. 14	0.0022	0. 1854	0.0032		1列目の杭がひび割れた
4	0.0230	0.013	2148. 20	0.0025	0. 2163	0.0037		2列目の杭がひび割れた
5	0.0235	0.013	2155.84	0.0025	0. 2173	0.0037		1列目の杭がひび割れた
6	0.0556	0.031	2596. 95	0.0031	0. 2735	0.0046		2列目の杭がひび割れた
7	0.0562	0.031	2604. 48	0.0031	0. 2744	0.0046		1列目の杭がひび割れた
8	0.0813	0.046	2950. 30	0.0036	0. 3184	0.0054		3列目の杭がひび割れた
9	0. 1011	0.057	3222.46	0.0039	0. 3530	0.0059		2列目の杭がひび割れた
10	0. 1017	0.057	3230.46	0.0040	0. 3540	0.0059		1列目の杭がひび割れた
11	0. 1044	0.058	3267.87	0.0040	0. 3587	0.0060		3列目の杭がひび割れた
12	0. 1382	0.077	3732. 42	0.0047	0. 4149	0.0070		2列目の杭がひび割れた
13	0. 1382	0.077	3732. 51	0.0047	0. 4150	0.0070		2列目の杭がひび割れた
14	0. 1382	0.077	3732. 58	0.0047	0. 4150	0.0070		1列目の杭がひび割れた
15	0. 1382	0.077	3732. 59	0.0047	0. 4150	0.0070		1列目の杭がひび割れた
16	0. 1382	0.077	3732. 60	0.0047	0. 4150	0.0070		1列目の杭がひび割れた
17	0. 1382	0.077	3732. 61	0.0047	0. 4150	0.0070		2列目の杭がひび割れた
18	0. 1432	0.080	3801. 22	0.0048	0. 4234	0.0072		2列目の杭がひび割れた
19	0. 1432	0.080	3801.46	0.0048	0. 4235	0.0072		1列目の杭がひび割れた
20	0. 1444	0.081	3816. 88	0.0048	0. 4254	0.0072		1列目の杭がひび割れた
21	0. 1444	0.081	3817. 07	0.0048	0. 4254	0.0072		2列目の杭がひび割れた
22	0. 1461	0.082	3840. 52	0.0048	0. 4284	0.0072		3列目の杭がひび割れた
23	0. 1499	0.084	3892. 90	0.0049	0. 4350	0.0074		2列目の杭がひび割れた
24	0. 1499	0.084	3893. 29	0.0049	0. 4350	0.0074		1列目の杭がひび割れた
25	0. 1521	0.085	3922. 70	0.0050	0. 4387	0.0074		1列目の杭がひび割れた
26	0. 1521	0.085	3923. 04	0.0050	0. 4388	0.0074		2列目の杭がひび割れた
27	0. 1607	0.090	4041. 44	0.0052	0. 4537	0.0077		2列目の杭がひび割れた
28	0. 1607	0.090	4041. 91	0.0052	0. 4538	0.0077		1列目の杭がひび割れた
29	0. 1710	0.096	4182. 95	0.0054	0. 4716	0.0080		1列目の杭がひび割れた
30	0. 1710	0.096	4183. 57	0.0054	0. 4717	0.0080		2列目の杭がひび割れた
31	0. 1710	0.096	4183. 68	0.0054	0. 4717	0.0080		2列目の杭がひび割れた
32	0. 1714	0.096	4188. 75	0.0054	0. 4724	0.0080		1列目の杭がひび割れた
33	0. 1740	0.097	4224. 84	0.0055	0. 4770	0.0081		2列目の杭がひび割れた
34	0. 1741	0.097	4225. 51	0.0055	0. 4771	0.0081		1列目の杭がひび割れた
35	0. 1908	0. 107	4454. 88	0.0058	0. 5064	0.0087		2列目の杭がひび割れた
36	0. 1908	0. 107	4455. 65	0.0058	0. 5065	0.0087		1列目の杭がひび割れた
37	0. 1946	0. 109	4507. 18	0.0059	0. 5131	0.0088		1列目の杭がひび割れた
38	0. 1946	0. 109	4508. 13	0.0059	0. 5133	0.0088		2列目の杭がひび割れた
39	0. 1960	0. 110	4526. 39	0. 0059 0. 0063	0. 5156	0. 0088 0. 0093		3列目の杭がひび割れた 2列目の杭がひび割れた
40 41	0. 2110	0.118	4733. 55	0.0063	0. 5418	0.0093		1列目の杭がひび割れた
- 1	0. 2111	0. 118	4734. 41		0. 5420			2列目の杭がひび割れた
42 43	0. 2329	0. 130	5034. 61	0.0068	0. 5800	0. 0100		1列目の杭がひび割れた
- 1	0. 2330	0. 130 0. 136	5035. 56	0. 0068 0. 0070	0. 5801 0. 5970	0. 0100 0. 0104		1列目の杭がひび割れた
44 45	0. 2427 0. 2428	1	5168. 81 5170. 15	0.0070	1	0. 0104		1列目の杭がひび割れた
- 1	0. 2428	0. 136	5170. 15 5229. 88	0.0070	0. 5972 0. 6048	0. 0104		2列目の杭がひび割れた
46 47	0. 2471	0. 138 0. 139	5229. 88 5234. 44	0.0071	0. 6048	0. 0105		2列目の杭がひび割れた
48	0. 2475	0. 139	5395. 62	0.0071	0. 6054	0. 0105		3列目の杭がひび割れた
48	0. 2592	0. 145	5395. 62	0.0074	0. 6261	0. 0109		3列目の杭がひび割れた
50	0. 2595	0. 145	5403. 48	0.0074	0. 6261	0. 0109		3列目の杭がひび割れた
51	0. 2598	0. 145	5415. 57	0.0074	0. 6287	0. 0109		2列目の杭がひび割れた
52	0. 2607	0. 146	5416. 66	0.0074	0. 6282	0. 0109		1列目の杭がひび割れた
53	0. 2657	0. 140	5485. 61	0.0074	0. 6283	0. 0109		3列目の杭がひび割れた
54	0. 2688	0. 149	5527. 47	0.0075	0. 6425	0. 0111		3列目の杭がひび割れた
55	0. 2743	0. 151	5603. 81	0.0078	0. 6523	0. 0112		3列目の杭がひび割れた
56 56	0. 2743	0. 154	5682. 41	0.0078	0. 6625	0. 0114		3列目の杭がひび割れた
57	0. 2841	0. 157	5738. 16	0.0079	0. 6625	0. 0116		3列目の杭がひび割れた
58	0. 2888	0. 169	5802. 18	0.0080	0. 6779	0. 0117		3列目の杭がひび割れた
59	0. 2935	0. 162	5866. 86	0.0081	0. 6863	0. 0119		2列目の杭がひび割れた
60	0. 2936	0. 164	5867. 99	0.0082	0. 6864	0. 0121		1列目の杭がひび割れた
61	0. 2930	0. 164	5978. 81	0.0084	0. 7008	0. 0121		1列目の杭がひび割れた
62	0. 3010	0. 169	5979.88	0.0084	0.7008	0. 0123		2列目の杭がひび割れた
63	0. 3017	0. 169	6041.41	0.0084	0. 7009	0. 0124		3列目の杭がひび割れた
64	0. 3062	0. 171	6063. 13	0.0085	0. 7089	0. 0125		3列目の杭がひび割れた
65	0. 3078	0. 172	6344. 16	0.0086	0. 7117	0. 0126		3列目の杭がひび割れた
66	0. 3262	0. 184	6439. 75	0.0091	0. 7402	0. 0135		2列目の杭がひび割れた
(3()		0. 188	6440. 95	0.0093	0. 7607	0. 0135		1列目の杭がひび割れた
- 1	_0 33E0 I							
67 68	0. 3352 0. 3428	0. 188	6545. 02	0.0094	0. 7744	0.0138		3列目の杭がひび割れた

No	αi	水平	水平力	杭頭変位	回転変位	水平変位	TYPE	状 態
		震度	(kN)	(m)	(×10 ⁻³ rad)	(m)		
70	0. 3623	0. 203	6812.92	0.0099	0.8093	0.0145		2列目の杭の地盤が塑性化した
71	0.3624	0. 203	6813.87	0.0099	0.8094	0.0145		1列目の杭の地盤が塑性化した
72	0. 3663	0. 205	6868.21	0.0100	0.8166	0.0146		2列目の杭がひび割れた
73	0. 3666	0. 205	6871.97	0.0100	0.8171	0.0146		1列目の杭がひび割れた
74	0. 3717	0. 208	6942.06	0.0102	0.8263	0.0148		2列目の杭の地盤が塑性化した
75	0. 3717	0. 208	6942.46	0.0102	0.8264	0.0148		1列目の杭の地盤が塑性化した
76	0. 3799	0. 213	7055, 50	0. 0104	0. 8416	0. 0151		3列目の杭がひび割れた
77	0. 3811	0. 213	7071. 25	0. 0104	0. 8437	0. 0152		2列目の杭がひび割れた
78	0. 3812	0. 213	7072. 31	0.0104	0. 8439	0. 0152		1列目の杭がひび割れた
79	0. 3821	0. 214	7085. 69	0. 0105	0. 8457	0. 0152		3列目の杭がひび割れた
80	0. 4074	0. 214	7433. 57	0.0103	0. 8923	0. 0162		3列目の杭がひび割れた
81	0. 4074	0. 232	7516. 72	0. 0112	0. 9035	0. 0162		3列目の杭がひび割れた
82	i i	1		0.0114	0. 9033			2列目の杭がひび割れた
1	0. 4318	0. 242	7768. 53			0. 0172		
83	0. 4319	0. 242	7769.63	0.0119	0. 9375	0. 0172		1列目の杭がひび割れた
84	0. 4336	0. 243	7792. 94	0.0120	0. 9406	0. 0172		2列目の杭の地盤が塑性化した
85	0. 4336	0. 243	7793. 44	0.0120	0. 9407	0. 0172		1列目の杭の地盤が塑性化した
86	0. 4523	0. 253	8049.72	0.0125	0. 9757	0. 0180		3列目の杭がひび割れた
87	0. 4599	0. 258	8155. 29	0.0128	0. 9902	0.0183		1列目の杭がひび割れた
88	0. 4601	0. 258	8157.82	0.0128	0. 9905	0.0183		2列目の杭がひび割れた
89	0. 4698	0. 263	8290.60	0.0130	1. 0087	0.0187		2列目の杭の地盤が塑性化した
90	0. 4698	0. 263	8291.47	0.0130	1.0089	0.0187		1列目の杭の地盤が塑性化した
91	0. 4855	0. 272	8506.71	0.0136	1. 0387	0.0194		2列目の杭がひび割れた
92	0. 4856	0. 272	8507.69	0.0136	1. 0389	0.0194		1列目の杭がひび割れた
93	0. 4864	0. 272	8519.53	0.0136	1. 0405	0.0194		3列目の杭がひび害いた
94	0. 4979	0. 279	8677.72	0.0140	1.0624	0.0199		3列目の杭がひび割れた
95	0. 5056	0. 283	8782. 90	0. 0142	1. 0770	0. 0202		2列目の杭がひび割れた
96	0. 5058	0. 283	8785. 45	0. 0142	1. 0774	0. 0203		1列目の杭がひび割れた
97	0. 5063	0. 284	8792. 19	0. 0142	1. 0783	0. 0203		2列目の杭の地盤が塑性化した
98	0. 5063	0. 284	8792. 71	0. 0142	1. 0784	0. 0203		1列目の杭の地盤が塑性化した
99	0.5081	0. 285	8817. 75	0. 0143	1. 0819	0. 0204		3列目の杭がひび割れた
100	0. 5436	0. 203	9305. 48	0. 0143	1. 1501	0. 0204		2列目の杭がひび割れた
1	i i					1		
101	0. 5437	0. 304	9306. 40	0.0155	1. 1502	0. 0220		1列目の杭がひび割れた
102	0. 5490	0. 307	9380. 32	0. 0157	1. 1605	0. 0222		3列目の杭がひび割れた
103	0. 5899	0. 330	9942.06	0.0171	1. 2390	0.0240		2列目の杭の地盤が塑性化した
104	0. 5899	0.330	9942.61	0.0171	1. 2391	0.0240		1列目の杭の地盤が塑性化した
105	0. 5933	0. 332	9988.68	0.0172	1. 2456	0.0242		2列目の杭の地盤が塑性化した
106	0. 5934	0.332	9989.39	0.0172	1. 2457	0.0242		1列目の杭の地盤が塑性化した
107	0.6108	0.342	10229.51	0.0179	1. 2800	0.0251		2列目の杭がひび割れた
108	0.6109	0.342	10230.27	0.0179	1. 2801	0.0251		1列目の杭がひび割れた
109	0.6134	0.344	10265.60	0.0180	1. 2851	0.0252		3列目の杭がひび割れた
110	0. 6462	0.362	10716.04	0.0193	1. 3494	0. 0268		3列目の杭がひび割れた
111	0.6600	0. 370	10905. 38	0.0198	1. 3765	0. 0275		3列目の杭の地盤が塑性化した
112	0. 6636	0. 372	10954. 57	0. 0199	1. 3837	0. 0277		3列目の杭がひび割れた
113	0. 6727	0. 377	11080. 11	0. 0203	1. 4018	0. 0282		3列目の杭の地盤が塑性化した
1 1	1 1	1		0. 0203		0. 0282		2列目の杭の地盤が塑性化した
114	0.6807	0.381	11189.71		1. 4180	1		
115	0. 6807	0. 381	11190. 15	0. 0207	1. 4180	0. 0286		1列目の杭の地盤が塑性化した
116	0. 6809	0. 381	11192.52	0. 0207	1. 4184	0. 0286		2列目の杭がひび割れた
117	0. 6809	0. 381	11193. 14	0.0207	1. 4185	0. 0286		1列目の杭がひび割れた
118	0. 6812	0. 381	11197. 19	0.0207	1. 4191	0. 0286		3列目の杭がひび割れた
119	0. 6846	0. 383	11243. 93	0.0208	1. 4260	0. 0288		2列目の杭がひび割れた
120	0. 6847	0. 383	11245. 12	0.0208	1. 4262	0. 0288		1列目の杭がひび割れた
121	0.7198	0.403	11727. 52	0.0224	1. 4981	0.0308		2列目の杭の地盤が塑性化した
122	0.7198	0.403	11728.03	0.0224	1. 4981	0.0308		1列目の杭の地盤が塑性化した
123	0. 7358	0.412	11947. 39	0.0232	1. 5312	0.0318	Y-3	3列目の杭が降伏した
124	0.7403	0.415	12009.45	0.0234	1. 5405	0.0320		2列目の杭がひび割れた
125	0.7403	0.415	12009.96	0.0234	1. 5406	0.0320		1列目の杭がひび割れた
126	0.7468	0.418	12098. 27	0.0237	1. 5539	0.0324		3列目の杭の地盤が塑性化した
127	0.7520	0.421	12169.76	0.0240	1. 5648	0.0327		3列目の杭がひび割れた
128	0. 7722	0. 432	12448. 60	0. 0250	1. 6075	0. 0340		2列目の杭の地盤が塑性化した
129	0. 7723	0. 432	12448. 97	0. 0250	1. 6075	0. 0340		1列目の杭の地盤が塑性化した
130	0. 7783	0. 436	12532. 25	0. 0253	1. 6204	0. 0344	Y-2	2列目の杭が降伏した
131	0. 7784	0. 436	12532. 26	0. 0253	1. 6204	0. 0344	Y-1	1列目の杭が降伏した
1	0. 7784	1	12658. 14	0. 0258		0. 0344	1.1	3列目の杭の地盤が塑性化した
132	1 1	0. 441			1. 6399	1		
133	0. 7994	0. 448	12821. 56	0.0265	1. 6657	0. 0358		2列目の杭がひび割れた
134	0. 7994	0. 448	12821.96	0.0265	1. 6658	0. 0358		1列目の杭がひび割れた
135	0.8040	0.450	12884.89	0.0268	1. 6757	0.0361		2列目の杭が弾性硬化した
136	0.8040	0.450	12885.93	0.0268	1. 6759	0.0361		1列目の杭が弾性硬化した
137	0.8041	0.450	12887. 21	0.0268	1.6761	0.0362		3列目の杭が降伏した
138	0.8245	0.462	13166.86	0.0282	1.7180	0. 0378		3列目の杭の地盤が塑性化した
139	0.8264	0. 463	13193. 10	0.0284	1. 7221	0. 0380		2列目の杭の地盤が塑性化した
1	1	0. 463	13193. 36	0. 0284	1. 7221	0. 0380		1列目の杭の地盤が塑性化した
140	0.8264							

No	αi	水平	水平力	杭頭変位	回転変位	水平変位	TYPE	状 態
		震度	(kN)	(m)	(×10 ⁻³ rad)	(m)		
142	0.8307	0.465	13252.51	0.0287	1. 7313	0.0384		1列目の杭がひび割れた
143	0.8309	0.465	13255. 10	0.0288	1. 7317	0.0385		3列目の杭がひび割れた
144	0.8378	0.469	13350.50	0.0294	1. 7463	0.0391		2列目の杭がひび割れた
145	0.8379	0.469	13350.74	0.0294	1. 7464	0.0391		1列目の杭がひび割れた
146	0.8422	0.472	13410.40	0.0297	1. 7555	0.0396		2列目の杭が降伏した
147	0.8422	0.472	13410.66	0.0297	1. 7556	0.0396		1列目の杭が降伏した
148	0.8656	0.485	13731.82	0.0327	1. 7943	0.0427		3列目の杭がひび割れた
149	0.8764	0.491	13881.15	0.0341	1.8124	0.0442		2列目の杭がひび割れた
150	0.8765	0.491	13881. 29	0.0341	1.8124	0.0442		1列目の杭がひび割れた
151	0.8779	0.492	13901.78	0.0343	1.8149	0.0444		2列目の杭がひび割れた
152	0.8780	0.492	13901.88	0.0343	1.8149	0.0444		1列目の杭がひび割れた
153	0.8808	0.493	13940.56	0.0346	1. 8195	0.0448		3列目の杭の地盤が塑性化した
154	0.8963	0.502	14153.88	0.0367	1. 8458	0.0470		3列目の杭の地盤が塑性化した
155	0.8984	0.503	14183.46	0.0370	1. 8495	0.0474		2列目の杭の地盤が塑性化した
156	0.8984	0.503	14183.57	0.0370	1. 8495	0.0474		1列目の杭の地盤が塑性化した
157	0. 9020	0.505	14232. 99	0.0376	1. 8558	0.0480		3列目の杭がひび割れた
158	0. 9087	0.509	14324.63	0.0387	1. 8675	0.0492		2列目の杭がひび割れた
159	0. 9087	0.509	14324.73	0.0387	1. 8675	0.0492		1列目の杭がひび割れた
160	0. 9341	0. 523	14674. 23	0.0430	1. 9123	0.0537		3列目の杭の地盤が塑性化した
161	0. 9377	0. 525	14723. 59	0.0436	1. 9187	0.0544		2列目の杭がひび割れた
162	0. 9377	0. 525	14723.68	0.0436	1. 9187	0.0544		1列目の杭がひび割れた
163	0. 9495	0.532	14886. 18	0.0457	1. 9399	0.0566		3列目の杭がひび割れた
164	0.9671	0.542	15127.09	0.0489	1. 9714	0.0599		2列目の杭がひび割れた
165	0. 9671	0.542	15127. 18	0.0489	1. 9714	0.0599		1列目の杭がひび割れた
166	0. 9796	0.549	15298.74	0.0511	1. 9938	0.0623		3列目の杭が降伏した
167	0. 9799	0.549	15303.09	0.0512	1. 9944	0.0624		3列目の杭の地盤が塑性化した
168	0. 9935	0.556	15490.01	0.0539	2. 0193	0.0652		3列目の杭の地盤が塑性化した
169	1.0000	0.560	15579.75	0.0552	2. 0315	0.0666	F	作用荷重が全載荷された

(3) 応答塑性率の照査

水平震度 k_h

設計水平震度 橋台基礎の降伏水平震度 橋台基礎の許容塑性率

khA = 0.56khyA = 0.44 μ AL = 3.00

初期変位を無視した場合の橋台基礎の応答塑性率
$$\mu \text{ 'Ar = } \frac{1}{2} \ \left\{1+\left(\frac{\text{khA}}{\text{khyA}}\right)^2\right\}$$

$$= \frac{1}{2} \ \left\{1+\left(\frac{0.56}{0.44}\right)^2\right\} = 1.3099$$

初期荷重による上部構造慣性力作用位置での水平変位 初期荷重を無視した場合の基礎が降伏に達する時の 上部構造の慣性力作用位置での水平変位

 $\delta 0 = 0.0031 \text{ (m)}$ $\delta' Ay = 0.0313$ (m)

橋台基礎が降伏に達する時の

上部構造の慣性力作用位置での水平変位

 $\delta \, Ay = 0.0344 \, (m)$

橋台基礎の変形による上部構造の慣性力作用位置での水平変位 δ Ar = μ 'Ar· δ 'Ay+ δ 0 = 0.0441 (m)

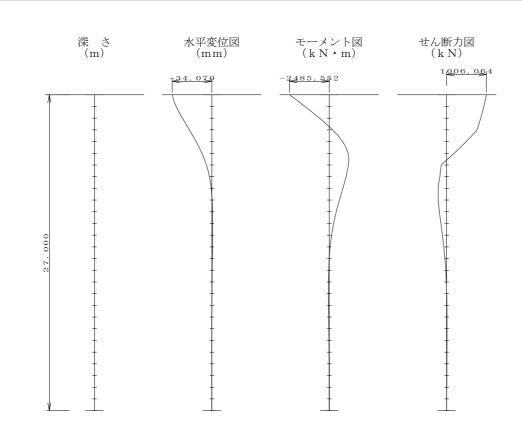
橋台基礎の応答塑性率

$$\mu \text{ Ar} = \frac{\delta \text{ Ar}}{\delta \text{ Ay}}$$

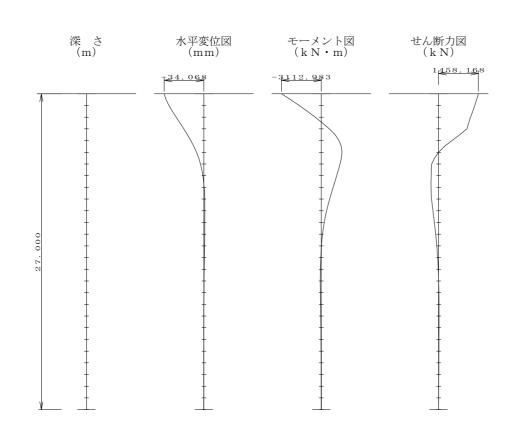
$$= \frac{0.0441}{0.0344} = 1.2823$$

 $\mu Ar \leq \mu AL$ (OK)

(4) 断面力および変位


1) 1列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	(×10 ⁻³ rad)	(kN·m)	(kN)
0.000	-2. 788	-34. 069	1.812	-2485. 533	1006. 056
0.500	-2. 788	-32. 669	3. 711	-1990. 453	974. 549
1.000	-2. 788	-30. 547	4. 734	-1511. 946	939. 944
1.500	-2. 788	-27. 997	5. 427	-1051. 560	902. 243
2.000	-2. 788	-25. 182	5. 805	-610. 841	861. 449
2. 500	-2. 788	-22. 257	5. 882	-191. 341	817. 553
3.000	-2. 788	-19. 314	5. 880	205. 388	770. 550
3. 500	-2. 788	-16. 385	5. 816	556. 281	637. 210
4.000	-2. 788	-13. 542	5. 529	838. 188	495. 736
4. 500	-2. 788	-10.887	5. 069	1047. 055	346. 146
5.000	-2. 788	-8. 494	4. 490	1178. 848	188. 429
5. 500	-2. 788	-6. 409	3. 846	1229. 540	22. 559
6.000	-2. 788	-4. 649	3. 195	1199. 458	-134. 512
6. 500	-2. 788	-3. 206	2. 583	1126. 453	-156. 174
7.000	-2. 788	-2.055	2. 027	1044. 481	-170. 649
7. 450	-2. 788	-1. 246	1. 577	961. 725	-195. 138
7. 900	-2. 788	-0.627	1. 183	870. 457	-208. 950
8.350	-2. 788	-0.171	0.847	774. 870	-214. 742
8.800	-2. 788	0. 147	0. 573	678.051	-214. 772
9.300	-2. 788	0.373	0. 339	572. 597	-205. 790
9.800	-2. 788	0.501	0. 176	473. 218	-191. 017
10.300	-2. 788	0.564	0.081	382. 087	-173. 158
10.800	-2. 788	0.589	0.024	300. 294	-153. 871
11. 300	-2. 788	0.590	-0.020	228. 283	-134. 170
11.800	-2. 788	0.571	-0.053	166.070	-114. 788
12. 300	-2. 788	0. 539	-0.076	113. 349	-96. 275
12.800	-2. 788	0.496	-0.091	69. 585	-79. 018
13. 300	-2. 788	0.448	-0.100	34. 079	-63. 272
13.800	-2. 788	0.397	-0. 103	6. 037	-49. 180
14. 300	-2. 788	0. 346	-0. 102	-15. 387	-36. 800
14.800	-2. 788	0. 296	-0.098	-31. 046	-26. 117
15. 300	-2. 788	0. 248	-0.092	-41. 776	-17. 067
15.800	-2. 788	0. 204	-0.085	-48. 369	-9. 550
16. 300	-2. 788	0. 164	-0.076	-51. 787	-4. 312
16.800	-2. 788	0. 128	-0.067	-52. 862	-0. 160
17. 300	-2. 788	0.096	-0.059	-52. 107	3. 030
17.800	-2. 788	0.069	-0.050	-49. 971	5. 384
18. 300	-2. 788	0.046	-0.042	-46. 842	7. 023
18.800	-2. 788	0.027	-0.034	-43. 048	8.062
19. 300	-2. 788	0.012	-0.028	-38. 862	8. 608
19.800	-2. 788	-0.001	-0.021	-34. 505	8. 760
20. 300	-2. 788	-0.010	-0.016	-30. 153	8. 605
20.800	-2. 788	-0.017	-0.011	-25. 939	8. 218
21. 300	-2. 788	-0.021	-0.007	-21. 962	7. 669
21.800	-2. 788	-0.024	-0.004	-18. 288	7. 013
22. 300	-2. 788	-0.026	-0.001	-14. 959	6. 298
22. 800	-2. 788	-0.026	0.001	-11. 993	5. 564
23. 300	-2. 788	-0. 025	0.003	-9. 393	4. 844
23. 800	-2. 788	-0.023	0.004	-7. 143	4. 162
24. 300	-2. 788	-0.021	0.005	-5. 221	3. 538
24. 800	-2. 788	-0.018	0.006	-3. 593	2. 988
25. 300	-2. 788	-0.015	0.006	-2. 219	2. 521
25. 800	-2. 788	-0.012	0.007	-1. 056	2. 145
26. 200	-2. 788	-0.009	0.007	-0. 401	1. 174
26. 600	-2. 788	-0.006	0.007	-0. 083	0. 458
27.000	-2. 788	-0.003	0.007	0.000	0.000


2) 2列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	$(\times 10^{-3} \text{ rad})$	(kN·m)	(kN)
0.000	2. 648	-34. 070	1. 812	-2485. 552	1006.064
0.500	2. 648	-32. 670	3.712	-1990. 469	974. 557
1.000	2. 648	-30. 548	4. 734	-1511. 957	939. 952
1.500	2. 648	-27. 998	5. 427	-1051. 567	902. 251
2.000	2. 648	-25. 183	5. 805	-610. 845	861. 457
2.500	2. 648	-22. 258	5. 882	-191. 340	817. 561
3.000	2. 648	-19. 315	5. 881	205. 392	770. 558
3.500	2. 648	-16. 385	5. 816	556. 289	637. 218
4.000	2. 648	-13. 543	5. 529	838. 200	495. 743
4.500	2. 648	-10.888	5. 070	1047. 072	346. 153
5.000	2. 648	-8. 495	4. 490	1178. 868	188. 437
5. 500	2. 648	-6. 409	3. 846	1229. 564	22. 567
6.000	2. 648	-4. 649	3. 195	1199. 484	-134. 512
6.500	2. 648	-3. 206	2. 584	1126. 479	-156. 175
7.000	2. 648	-2.056	2. 027	1044. 506	-170. 650
7.450	2. 648	-1. 246	1. 577	961. 749	-195. 141
7. 900	2.648	-0.627	1. 183	870. 479	-208. 954
8.350	2. 648	-0. 171	0.847	774. 891	-214. 747
8.800	2.648	0. 147	0. 573	678.069	-214. 777
9.300	2.648	0.373	0. 339	572. 612	-205. 795
9.800	2.648	0.501	0. 176	473. 231	-191. 022
10.300	2. 648	0.564	0.081	382. 098	-173. 163
10.800	2. 648	0. 589	0.024	300. 303	-153. 876
11. 300	2.648	0.590	-0.020	228. 290	-134. 173
11.800	2. 648	0. 571	-0.053	166. 075	-114. 791
12. 300	2.648	0. 539	-0.076	113. 353	-96. 277
12.800	2.648	0.496	-0.091	69. 587	-79. 020
13. 300	2.648	0.448	-0. 100	34. 081	-63. 273
13.800	2.648	0.397	-0. 103	6.037	-49. 182
14. 300	2. 648	0.346	-0. 102	-15. 387	-36. 801
14.800	2. 648	0. 296	-0.098	-31. 047	-26. 118
15. 300	2. 648	0. 248	-0.092	-41. 777	-17. 068
15.800	2. 648	0. 204	-0.085	-48. 370	-9. 550
16.300	2. 648	0. 164	-0.076	-51. 788	-4. 312
16.800	2. 648	0.128	-0.067	-52. 863	-0. 160
17. 300	2. 648	0.096	-0.059	-52. 108	3. 030
17.800	2. 648	0.069	-0.050	-49. 972	5. 384
18.300	2. 648	0.046	-0.042	-46. 843	7. 023
18.800	2. 648	0.027	-0.034	-43. 049	8. 062
19.300	2. 648	0.012	-0.028	-38. 863	8. 609
19.800	2. 648	-0.001	-0.021	-34. 506	8. 760
20.300	2. 648	-0.010	-0.016	-30. 154	8.605
20.800	2. 648	-0.017	-0.011	-25. 940	8. 219
21. 300	2. 648	-0.021	-0.007	-21. 962	7. 669
21.800	2. 648	-0.024	-0.004	-18. 289	7. 013
22. 300	2. 648	-0.026	-0.001	-14. 959	6. 298
22.800	2. 648	-0.026	0.001	-11. 994	5. 564
23. 300	2. 648	-0.025	0.003	-9. 393	4. 844
23.800	2. 648	-0.023	0.004	-7. 143	4. 162
24. 300	2. 648	-0.021	0.005	-5. 221	3. 538
24.800	2. 648	-0.018	0.006	-3. 593	2. 988
25. 300	2. 648	-0.015	0.006	-2. 219	2. 521
25.800	2. 648	-0.012	0.007	-1.056	2. 145
26. 200	2. 648	-0.009	0.007	-0. 401	1. 174
26.600	2. 648	-0.006	0.007	-0. 083	0. 458
27.000	2. 648	-0.003	0.007	0.000	0.000

3) 3列目

距離	鉛直変位	水平変位	回転変位	曲げモーメント	せん断力
(m)	(mm)	(mm)	(×10 ⁻³ rad)	(kN⋅m)	(kN)
0.000	8. 081	-34. 068	1.811	-3112. 983	1458. 168
0.500	8. 081	-32. 442	4. 536	-2399. 786	1395. 145
1.000	8. 081	-29.891	5. 607	-1719. 738	1325. 922
1.500	8. 081	-26. 918	6. 236	-1075. 946	1250. 509
2.000	8. 081	-23. 739	6. 449	-471. 205	1170. 134
2.500	8. 081	-20. 503	6. 480	95. 890	1099. 959
3.000	8. 081	-17. 274	6.419	630. 465	1040.049
3.500	8. 081	-14. 127	6. 147	1081.678	773. 359
4.000	8. 081	-11. 180	5. 618	1394. 941	490. 422
4.500	8. 081	-8. 540	4. 926	1566. 844	209. 749
5.000	8. 081	-6. 268	4. 161	1616. 397	-0.724
5.500	8. 081	-4. 380	3. 395	1576.018	-151. 805
6.000	8. 081	-2.864	2. 678	1472.677	-254. 351
6.500	8. 081	-1. 687	2. 041	1342. 109	-266. 834
7.000	8. 081	-0.806	1. 492	1206. 789	-273. 628
7.450	8. 081	-0. 230	1. 077	1081.638	-281. 163
7. 900	8. 081	0. 176	0. 737	954. 837	-281. 380
8.350	8. 081	0. 446	0. 473	829. 147	-276. 569
8.800	8. 081	0.615	0. 283	706. 410	-268. 509
9.300	8. 081	0.724	0. 156	577. 622	-246. 040
9.800	8. 081	0. 779	0.070	460. 811	-220. 893
10.300	8. 081	0. 796	0.002	356. 925	-194. 559
10.800	8. 081	0. 784	-0.050	266. 259	-168. 176
11.300	8. 081	0.748	-0.088	188. 611	-142.610
11.800	8. 081	0. 698	-0.114	123. 406	-118. 494
12.300	8. 081	0. 636	-0. 130	69. 802	-96. 261
12.800	8. 081	0. 569	-0. 138	26. 786	-76. 179
13. 300	8. 081	0. 499	-0. 139	-6. 758	-58. 383
13.800	8. 081	0. 430	-0. 136	-31. 984	-42. 902
14. 300	8. 081	0. 364	-0. 129	-50. 037	-29. 680
14.800	8. 081	0. 302	-0. 120	-62. 021	-18. 604
15. 300	8. 081	0. 245	-0. 109	-68. 973	-9. 518
15.800	8. 081	0. 193	-0.097	-71. 841	-2. 241
16. 300	8. 081	0. 148	-0.085	-71. 693	2. 615
16.800	8. 081	0. 108	-0.073	-69. 428	6. 260
17. 300	8. 081	0. 075	-0.062	-65. 607	8. 863
17.800	8. 081	0. 047	-0.051	-60. 712	10. 583
18. 300	8. 081	0. 023	-0.041	-55. 146	11. 572
18. 800	8. 081	0.005	-0. 033	-49. 239	11. 967
19. 300	8. 081	-0.009	-0. 025	-43. 257	11. 894
19.800	8. 081	-0.020	-0.018	-37. 405	11. 462
20. 300	8. 081	-0.028	-0.013	-31. 839	10. 767
20. 800	8. 081	-0. 033	-0.008	-26. 668	9. 892
21. 300	8. 081	-0. 036	-0.004	-21. 965	8. 906
21. 800	8. 081	-0. 037	0.000	-17. 771	7. 868
22. 300	8. 081	-0.036	0.002	-14. 098	6. 825
22. 800	8. 081	-0.034	0.004	-10. 940	5. 815
23. 300	8. 081	-0.032	0.006	-8. 273	4. 867
23. 800	8. 081	-0. 028	0.007	-6. 059	4. 005
24. 300	8. 081	-0. 025	0.008	-4. 251	3. 245
24. 800	8. 081	-0.020	0.009	-2. 795	2. 601
25. 300	8. 081	-0.016	0.009	-1. 630	2. 079
25. 800	8. 081	-0.011	0.009	-0.694	1. 687
26. 200	8. 081	-0.008	0.009	-0. 214	0. 771
26. 600	8. 081	-0.004	0.009	-0.030	0. 209
27. 000	8. 081	0.000	0.009	0.000	0.000

(5) せん断耐力の算出

270HHI01777	項目	記号	単位	
杭径		D	mm	1200
荷重の正負交番作用	の影響に関する補正係数	Сс	ı	1.000
部材断面の有効高	部材幅	b	mm	1063
に関する補正	部材高	h	mm	1063
(正方形換算)	有効高	d	mm	938
	補正係数	Се	1	1. 036
軸方向引張鉄筋	軸方向引張鉄筋比	pt	%	1. 115
比に関する補正	補正係数	Cpt		1. 500
	作用軸力(死荷重作用時)	N	N	1442.50×10^{3}
	作用曲げモーメント	M	N∙mm	3920.25×10^{6}
	断面積	Ac	mm^2	1. 13097×10^6
軸方向圧縮力	断面二次モーメント	Ιc	mm^4	0.10179×10^{12}
による補正	図心より引張縁までの距離	У	mm	600
	軸方向圧縮力によりコンクリート			
	の応力度が部材引張縁で零	Mo	N•mm	216. 37×10^6
	となる曲げモーメント			
	補正係数	CN		1. 055
コンクリートが負担	できる平均せん断応力度	τс	N/mm^2	0.350
コンクリートの負担	するせん断耐力	Sc	N	572.11×10^{3}
	鉄筋の断面積	Aw	mm^2	397. 2
帯鉄筋	鉄筋の間隔	S	mm	150
	鉄筋の降伏点	σsy	N/mm^2	345. 00
帯鉄筋の負担するせ	た断耐力	Ss	N	744.93×10^{3}
杭一本あたりのせん	断耐力	Ps'	N	1317.04×10^3

なお、杭基礎に対するせん断耐力は、第 1 断面の杭本数分とする。 Ps = Ps'・n = 1317.04 × 12 = 15804.53 kN

(6) 杭基礎照査結果

lpha i=1.0に達するまでに基礎が降伏しているため、応答塑性率の照査を行い、応答変位時にて杭基礎に対する照査を行う。

· 杭頭断面力

杭		杭頭	支持力	杭頭	杭頭	杭頭降伏	最大	最大曲げ位置
列	本数	反力	上限値	せん断力	モーメント	モーメント	モーメント	降伏モーメント
No		PN (kN)	PNU (kN)	S(kN)	Mt (kN·m)	Myt(kN⋅m)	Mmax(kN·m)	My (kN·m)
1	4	-1598. 36	8141. 75	1006.06	-2485. 53	2191.76	-2485. 53	2191. 76
2	4	1518. 16	8141. 75	1006.06	-2485. 55	2191.76	-2485. 55	2191. 76
3	4	4632. 44	8141. 75	1458. 17	-3112. 98	2629.65	-3112. 98	2629.65

・せん断耐力の照査 $\Sigma S = 13881.15$ (kN) \leq Ps = 15804.53 (kN) --OK

・変位の照査 $\mu \operatorname{Ar} = 1.2823$ $\leq \mu \operatorname{AL} = 3.0000$ $--\operatorname{OK}$

ゆえに、基礎は耐力を有する。