目 次

1	章 設計条件	1
	1-1 設計条件	1
	1-2 主版および幅員構成寸法	
2	章 主版断面の設計	
4	2-1 幅員構成(主版内)	J
	2-2 荷重条件	၁
	2-2-2 活荷重	5 5
	2-3 橋軸方向Mxの影響値	
	2-3-1 a1点における影響値	7
	2-3-2 a5点における影響値	8
	2-3-3 縁端載荷による係数値	9
	2-3-4 a 1点における影響線面積	10
	2-3-5 a 1点における影響線体積	10
	2-3-6 a1点での死荷重による曲げモーメント 2-3-7 a1点での活荷重による曲げモーメント	II
	2-3-8 a 5点における影響線面積	
	2-3-9 a 5点における影響線体積	13
	2-3-10 a 5点での死荷重による曲げモーメント	14
	2-3-11 a5点での活荷重による曲げモーメント	15
	2-3-12 a 9点における影響線面積	
	2-3-13 a 9点における影響線体積	16
	2-3-14 a 9点での死荷重による曲げモーメント	17
	2-3-15 a 9点での活荷重による曲げモーメント 2-3-16 設計曲げモーメント値	
	2-4 橋軸直角方向Myの影響値	
	2-4-1 a5点における影響値	
	2-4-2 縁端載荷による係数値	21
	2-4-3 a 5点における影響線面積	22
	2-4-4 a5点における影響線体積	22
	2-4-5 a 5点での死荷重による曲げモーメント	23
	2-4-6 a 5点での活荷重による曲げモーメント (正曲げ)	
	2-4-7 a5点での活荷重による曲げモーメント (負曲げ) 2-4-8 設計曲げモーメント値	25
3	章 断面の設計	
	3-1 橋軸方向の設計 (死荷重時)	
	3-1-1 断面計算	
	3-2 橋軸方向の設計 (設計時)	28
	3-2-1 断面計算	28
	3-3 橋軸直角方向の設計 (死荷重時)	
	3-3-1 断面計算	
	3-4 橋軸直角方向の設計 (設計時正曲げ)	32
	3-4-1 断面計算(設計時)	32
	3-4-2 断面計算(衝突時)	
	3-4-3 終局荷重作用時の照査	
	3-5 橋軸直角方向の設計 (設計時負曲げ)	36
	3-5-1 断面計算(設計時)	36
	3-5-2 断面計算(衝突時)	37
	3-5-3 終局荷重作用時の照査	38

3-6 計算結果一覧表	40
4 章 下部工設計用反力の計算	
1 + 1 HP-1MH1/H/A/JVVH19F	11

1章 設計条件

1-1 設計条件

構 造 形 式 : R C 単純床版橋

道路規格: 大型車交通量:

橋 長: 8.560 (m)

長: 8.500 桁 (m)

支 間 長 : 8.000 (m)

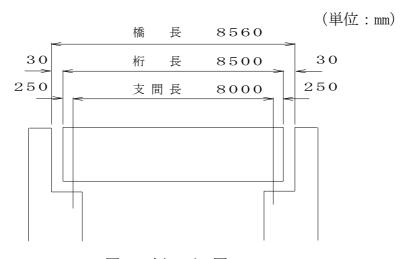
総 幅員 : 10.200 (m)

有 効 幅 員 : 9.000 (m)

設 計 荷 重 : TA活荷重

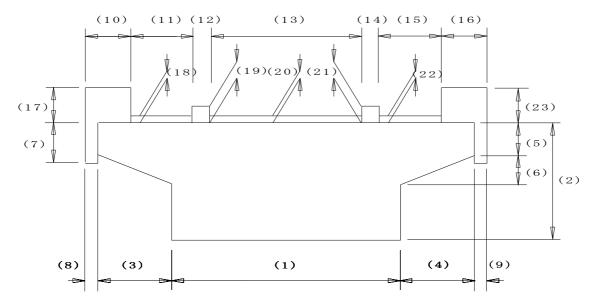
添 架 物 個数= 2 荷重強度(kN/m)

載荷位置(地覆端からの距離)(m) -0.500 (L)


1.000

-0.500 (R) 1.000

斜 角: 90°0′0.000″


衝撃係数:i=20/(50+L)

設 計 震 度 : Kh =

側 図 1 义 面

1-2 主版および幅員構成寸法

(1) 主版寸法

番号	寸法値 (m)
(1)	7. 800
(2)	0. 650
(3)	1. 100
(4)	1. 100
(5)	0. 200
(6)	0. 150

(2) 幅員構成寸法

番号	寸法値 (m)	番号	寸法値 (m)
(7) (8) (9) (10) (11) (12) (13) (14) (15) (16)	0. 220 0. 100 0. 100 0. 600 2. 300 0. 200 6. 500 0. 000 0. 000 0. 600	(17) (18) (19) (20) (21) (22) (23)	0. 300 0. 150 0. 200 0. 050 0. 000 0. 000 0. 300

2章 主版断面の設計

2-1 幅員構成(主版内)

名 称	幅 (m)
左歩道	1. 700
左縁石	0. 200
車 道	5. 900

2-2 荷重条件

2-2-1 死荷重

(1) 主桁自重

 $Wg0= 0.650 \times 24.50=15.925 \text{ (kN/m}^2)$

- (2) 橋面死荷重
 - a) 左歩道

 $Wg1= 0.150 \times 23.00= 3.450 \text{ (kN/m}^2)$

b) 左縁石

 $Wg2= 0.200 \times 24.50= 4.900 \text{ (kN/m}^2)$

c) 車 道

Wg3= $0.050 \times 22.50 = 1.125$ (kN/m²)

(3) 縁端荷重および縁端曲げ

a) 縁端死荷重 (左張出床版)

```
1) 床版 ① 1.100×0.200×24.500
                                            = 5.390 (kN/m)
      版 ② 1/2 \times 1.100 \times 0.150 \times 24.500
   床
                                                2.021 \, (kN/m)
   高欄
                                                0.600 \, (kN/m)
   地 覆
                                                4.410 \text{ (kN/m)}
4)
             0.600 \times 0.300 \times 24.500
                                            =
   水切
             0.100 \times 0.220 \times 24.500
                                            =
                                                0.539 \, (kN/m)
5)
   歩道舗装 0.600×0.150×23.000
                                            =
                                                2.070 \, (kN/m)
6)
                                            = 1.000 (kN/m)
   添架物①
                                               16.030 (kN/m)
   合計
```

b) 縁端死荷重(右張出床版)

```
= 5.390 (kN/m)
1) 床版(1) 1.100×0.200×24.500
2) 床版② 1/2×1.100×0.150×24.500 = 2.021 (kN/m)
                                       = 0.600 (kN/m)
3) 高欄
4) 地 覆
            0.600 \times 0.300 \times 24.500
                                       = 4.410 \, (kN/m)
5) 水切
            0.100 \times 0.220 \times 24.500
                                       = 0.539 (kN/m)
6) 車道舗装 0.600×0.050×22.500
                                       = 0.675 \text{ (kN/m)}
7) 添架物①
                                       = 1.000 (kN/m)
   合計
                                         14.635 (kN/m)
```

c) 縁端曲げ死荷重 (左張出床版)

```
1) 床版①
                5. 390 \times 1.100/2
                                                 = 2.964 (kN \cdot m/m)
                2.021 \times 1.100/3
                                                 = 0.741 (kN \cdot m/m)
2) 床版②
3)
   高欄
                0.600 \times (1.200 - 0.600/2)
                                                 = 0.540 \text{ (kN} \cdot \text{m/m)}
4) 地覆
                4.410 \times (0.600 + 0.600 / 2)
                                                 =
                                                     3.969 (kN \cdot m/m)
   水切
5)
                0.539 \times (1.100 + 0.100/2)
                                                 = 0.620 (kN \cdot m/m)
6) 歩道舗装
                2.070 \times 0.600/2
                                                 = 0.621 (kN \cdot m/m)
   添架物①
7)
                1.000 \times (1.200 - 0.500)
                                                 = 0.700 (kN \cdot m/m)
    合計
                                                   10.155 (kN·m/m)
```

d) 縁端曲げ死荷重(右張出床版)

```
1) 床版①
                5. 390 \times 1.100/2
                                                 = 2.964 (kN \cdot m/m)
2) 床版②
                2.021 \times 1.100/3
                                                 = 0.741 \text{ (kN} \cdot \text{m/m)}
3)
   高欄
                0.600 \times (1.200 - 0.600 / 2)
                                                     0.540 (kN \cdot m/m)
                                                 =
   地覆
                4.410 \times (0.600 + 0.600 / 2)
4)
                                                 =
                                                     3.969 (kN \cdot m/m)
   水切
5)
                0.539 \times (1.100 + 0.100/2)
                                                 =
                                                     0.620 (kN \cdot m/m)
   車道舗装
                0.675 \times 0.600/2
                                                     0.203 (kN \cdot m/m)
6)
                                                 =
   添架物①
                1.000 \times (1.200 - 0.500)
                                                 = 0.700 (kN \cdot m/m)
    合計
                                                     9.737 (kN·m/m)
```

2-2-2 活荷重

(1) 高欄推力による曲げモーメント

$$mgL= 2.500 \times (1.100+0.650/2)=3.563 \text{ (kN·m/m)}$$

 $mgR= 2.500 \times (1.100+0.650/2)=3.563 \text{ (kN·m/m)}$

(2) 片側荷重

T = 100.00 (kN)

(3) 衝撃係数

$$i = 20/(50 + 8.000) = 0.345$$

(4) 支間に対する割増係数

$$\alpha = 1.000$$

- (5) 影響線パラメーター
 - a) 支間主版比

L/B= 8.000/ 7.800= 1.03

b) 輪荷重分布幅比

橋軸方向分布幅 $2c = 200+2 \times 50 = 300 \text{ (mm)}$ 直角方向分布幅 $2c' = 500+2 \times 50 = 600 \text{ (mm)}$ $c/B = 0.300/(2 \times 7.800) = 0.019$

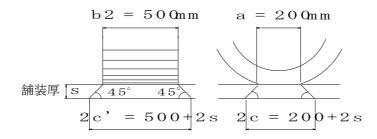


図2 輪荷重の分布

(6) 衝突荷重による曲げモーメント

 $mcoL=30.000 \times (0.600+0.650/2)=27.750 \text{ (kN·m/m)}$ $mcoR=30.000 \times (0.600+0.650/2)=27.750 \text{ (kN·m/m)}$

(7) 衝突荷重による輪荷重

主版縁端(左側)から 0.600 mに以下の荷重を載荷する。 P1L= 100.00 (kN)

主版縁端(右側)から 0.600 mに以下の荷重を載荷する。 P1R= 100.00 (kN)

2-3 橋軸方向Mxの影響値

図3に示すようにオルゼンの図表では、主版幅 b、および支間長Lをそれぞれ8等分して、支間中央 a における版縁端 a 1点、 a 9点、および中央 a 5点の各点についての x および y 方向の曲げモーメントMx、Myの影響値を L: b=1: ∞ ~L: b= ∞ : 1の範囲で表に示されている。また、各点における影響値の尖端値も c/B(輪荷重分布幅比)により0.015~0.080の範囲で表に示されてる。ただし,橋軸方向Mx算出時には、ポアソン比 v=0と仮定している。橋軸直角方向My算出時には、オルゼンの図表の範囲内では v=1/6とし、それ以外では、v=0と仮定している。

では、 $\nu=0$ と仮定している。 本プログラムでは、各点における影響値は、L/B (支間主版比) および、c/Bにより直線補間を行うことで算出している。同様に、 縁端載荷による係数も直線補間により算出している。

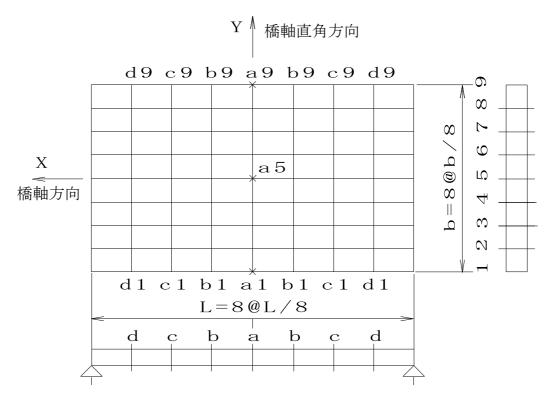


図3 主版と支間の分割

2-3-1 a1点における影響値

表-1.1 Mx影響值

 $(\nu = 0)$

1.00:1	1	2	3	4	5	6	7	8	9
a b c d	0. 350 0. 193 0. 089	0. 461 0. 331 0. 192 0. 090	0. 316 0. 268 0. 175 0. 085	0. 234 0. 209 0. 149 0. 075	0. 179 0. 163 0. 120 0. 063	0. 140 0. 129 0. 097 0. 051	0. 112 0. 103 0. 079 0. 043	0. 092 0. 085 0. 065 0. 035	0. 076 0. 070 0. 054 0. 029

表-1.2 Mx影響値

 $(\nu = 0)$

1. 25:1	1	2	3	4	5	6	7	8	9
a b c d	0. 364 0. 206 0. 094	0. 524 0. 354 0. 203 0. 096	0. 381 0. 310 0. 198 0. 094	0. 299 0. 261 0. 179 0. 090	0. 244 0. 219 0. 157 0. 081	0. 203 0. 184 0. 138 0. 071	0. 159 0. 121	0. 150 0. 138 0. 106 0. 058	0. 130 0. 121 0. 093 0. 051

表-1.3 Mx影響値(補間値)

 $(\nu = 0)$

1.03:1	1	2	3	4	55	6	7	8	9
a b c d	0. 352 0. 195 0. 090	0. 469 0. 334 0. 193 0. 091	0. 324 0. 273 0. 178 0. 086	0. 242 0. 215 0. 153 0. 077	0. 187 0. 170 0. 124 0. 065	0. 148 0. 136 0. 102 0. 053	0. 119 0. 110 0. 084 0. 046	0. 099 0. 091 0. 070 0. 038	0. 082 0. 076 0. 059 0. 032

表-1.4 尖端値 [L:B=1.00:1]

c/B	0.015	0.020	0.030	0.040	0.060	0.080
a	1. 020	0. 950	0.870	0.810	0.720	0.660

表-1.5 尖端値

[L:B=1.25:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	1. 080	1. 020	0.930	0.870	0. 780	0. 720

表-1.6 尖端値(補間値) [L:B=1.03:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	1.027	0.958	0.877	0.817	0.727	0.667

表-1.7 尖端値(補間値)

c/B	0. 015	0. 020	0. 019
a	1. 027	0. 958	0. 972

2-3-2 a5点における影響値

表-2.1 Mx影響値

 $(\nu = 0)$

1.00:1	1	2	3	4	5
a b c d	0. 179 0. 163 0. 120 0. 063	0. 197 0. 176 0. 127 0. 065	0. 224 0. 192 0. 130 0. 064	0. 277 0. 203 0. 124 0. 060	0. 190 0. 117 0. 057

表-2.2 Mx影響値

 $(\nu = 0)$

1.25:1	1	2	3	4	5
a b c d	0. 245 0. 219 0. 158 0. 081	0. 260 0. 229 0. 161 0. 081	0. 287 0. 239 0. 160 0. 079	0. 339 0. 242 0. 152 0. 075	0. 230 0. 147 0. 073

表-2.3 Mx影響値(補間値) (ν=0)

1.03:1	1	2	3	4	5
a b c d	0. 187 0. 170 0. 125 0. 065	0. 205 0. 182 0. 131 0. 067	0. 232 0. 198 0. 134 0. 066	0. 284 0. 208 0. 127 0. 062	0. 195 0. 121 0. 059

表-2.4 尖端値 [L:B=1.00:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	0.450	0.420	0.390	0.370	0.330	0.310

表-2.5 尖端値 [L:B=1.25:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	0. 510	0. 480	0. 450	0. 430	0.400	0.370

表-2.6 尖端値(補間値) [L:B=1.03:1]

с/В	0.015	0.020	0.030	0.040	0.060	0.080
а	0. 457	0. 427	0. 397	0.377	0. 338	0. 317

表-2.7 尖端値(補間値)

c/B	0. 015	0.020	0.019
a	0. 457	0. 427	0. 433

2-3-3 縁端載荷による係数値

表-3.1 縁端荷重Pr

L : B	(v =0)	a1	а5	a9
1. 00 : 1	Mx PrL	0. 253	0. 110	0. 048
1. 25 : 1		0. 263	0. 147	0. 083
1. 03 : 1		0. 254	0. 114	0. 052

表-3.2 縁端曲げmr

L : B (ν=0)	a1	a5	a9
1. 00 : 1 Mx 1. 25 : 1		-0. 062 -0. 054	-0. 078 -0. 117
1. 23 · 1 1. 03 · 1 mr			-0. 083

2-3-4 a 1点における影響線面積

区間	区間長	a	b	С	d
1	0. 000 0. 975 0. 725	0. 972 0. 469 0. 361	0. 352 0. 334 0. 289	0. 195 0. 193 0. 182	0. 090 0. 091 0. 087
小計	1. 700	1. 0034	0. 5603	0. 3251	0. 1528
2	0. 200	0. 331	0. 276	0. 179	0.086
小計	0. 200	0.0692	0. 0565	0. 0361	0.0173
3	0. 050 0. 975 0. 975 0. 975 0. 975 0. 975 0. 975	0. 324 0. 242 0. 187 0. 148 0. 119 0. 099 0. 082	0. 273 0. 215 0. 170 0. 136 0. 110 0. 091 0. 076	0. 178 0. 153 0. 124 0. 102 0. 084 0. 070 0. 059	0. 086 0. 077 0. 065 0. 053 0. 046 0. 038 0. 032
小計	5. 900	0. 9894	0. 8878	0. 6441	0. 3339

2-3-5 a 1点における影響線体積

(1) 区間 I

V1 =
$$2 \times \frac{1.000}{3} \times \{ 1.003 + 4 \times (0.560 + 0.153) + 2 \times 0.325 \} = 3.003$$

(2) 区間Ⅱ

$$V2 = 2 \times \frac{1.000}{3} \times \{ 0.069 + 4 \times (0.057 + 0.017) + 2 \times 0.036 \} = 0.291$$

(3) 区間Ⅲ

影響線体積は、理論的に L²/8となるので車道部で調整する

$$V3 = \frac{8.000^{2}}{8} - (3.003 + 0.291) = 4.706$$

2-3-6 a1点での死荷重による曲げモーメント

(1) 主桁自重によるもの

 $Mod=1/8 \times 15.925 \times 8.000^{2}=127.400 \text{ (kN·m/m)}$

- (2) 橋面死荷重によるもの
 - a) 左歩道によるもの

 $Mg1= 3.003 \times 3.450=10.360 (kN \cdot m/m)$

b) 左縁石によるもの

 $Mg2= 0.291 \times 4.900= 1.426 \text{ (kN·m/m)}$

c) 車 道によるもの

 $Mg3= 4.706 \times 1.125= 5.294 \text{ (kN·m/m)}$

d) 橋面死荷重合計

Mgd=10.360+ 1.426+ 5.294 =17.080 (kN·m/m)

(3) 縁端荷重によるもの

Mpd= $(16.030 \times 0.254 + 14.635 \times 0.052) \times 8.000$ = 38.661 (kN·m/m)

(4) 縁端曲げによるもの

Mrd= 10.155 × 0.325+ 9.737 × (-0.083) = 2.492 ($kN \cdot m/m$)

(5) 曲げモーメントの合計

Mdg=127. 400+ 17. 080+ 38. 661+ 2. 492 = 185. 63 (kN·m/m)

2-3-7 a1点での活荷重による曲げモーメント

(1) 片側荷重の載荷位置(左版端部からの距離 m)

T荷重台数: 2台

影響値 1 影響値 2 載荷位置 1 (アーム長) 載荷位置 2 (アーム長) 0.3072 0.1870 2.150 3.900 0.1473 0.1026 4.900 6.650

T荷重による影響線縦距の合計: 0.7441

- (2) 張出部の活荷重
 - a)群集荷重による縁端荷重 PgL= 0.600 × 3.500 = 2.100 (kN/m)

b)群集荷重による縁端曲げ荷重 mgL= 2.100 × 0.600/2 = 0.630 (kN·m/m)

(3) 群集荷重によるもの

(4) 高欄推力によるもの

M11= $3.563 \times 0.325 = 1.158 \text{ (kN} \cdot \text{m/m)}$ M12= $3.563 \times (-0.083) = -0.296 \text{ (kN} \cdot \text{m/m)}$

- (5) 輪荷重によるもの
 - a) 片側荷重 M11= 0.7441×100.00= 74.410 (kN·m/m)
 - b) 衝撃係数 M12= 74.410× 0.345= 25.671 (kN·m/m)
 - c) 支間に対する割増し M13=(74.410+25.671)×1.000=100.081 (kN·m/m)
- (6) 曲げモーメントの合計

M1g= 11.529+ 1.158+100.081+ 4.267+ 0.205 = 117.24 ($kN \cdot m/m$)

2-3-8 a 5点における影響線面積

区間	区間長	a	b	С	d
1	0. 000 0. 975 0. 725	0. 187 0. 205 0. 225	0. 170 0. 182 0. 194	0. 125 0. 131 0. 133	0. 065 0. 067 0. 066
小計	1. 700	0. 3470	0. 3079	0. 2205	0. 1126
2	0. 200	0. 231	0. 197	0. 134	0.066
小計	0. 200	0.0456	0. 0391	0. 0267	0.0132
3	0. 050 0. 975 0. 975 0. 975 0. 975 0. 975 0. 975	0. 232 0. 284 0. 433 0. 284 0. 232 0. 205 0. 187	0. 198 0. 208 0. 195 0. 208 0. 198 0. 182 0. 170	0. 134 0. 127 0. 121 0. 127 0. 134 0. 131 0. 125	0. 066 0. 062 0. 059 0. 062 0. 066 0. 067 0. 065
小計	5. 900	1. 6179	1. 1555	0. 7570	0. 3753

2-3-9 a 5点における影響線体積

(1) 区間 I

$$V1 = 2 \times \frac{1.000}{3} \times \{ 0.347 + 4 \times (0.308 + 0.113) + 2 \times 0.220 \} = 1.647$$

(2) 区間Ⅱ

$$V2 = 2 \times \frac{1.000}{3} \times \{ 0.046 + 4 \times (0.039 + 0.013) + 2 \times 0.027 \} = 0.205$$

(3) 区間Ⅲ

影響線体積は、理論的に L²/8となるので車道部で調整する

$$V3 = \frac{8.000^{2}}{8} - (1.647 + 0.205) = 6.148$$

2-3-10 a 5点での死荷重による曲げモーメント

(1) 主桁自重によるもの

 $Mod=1/8 \times 15.925 \times 8.000^{2}=127.400 \text{ (kN·m/m)}$

- (2) 橋面死荷重によるもの
 - a) 左歩道によるもの

$$Mg1= 1.647 \times 3.450= 5.682 \text{ (kN} \cdot \text{m/m)}$$

b) 左縁石によるもの

$$Mg2= 0.205 \times 4.900= 1.005 \text{ (kN} \cdot \text{m/m)}$$

c) 車 道によるもの

$$Mg3=6.148 \times 1.125=6.916 \text{ (kN·m/m)}$$

d) 橋面死荷重合計

(3) 縁端荷重によるもの

Mpd=
$$(16.030 \times 0.114 + 14.635 \times 0.114) \times 8.000$$

= 27.966 (kN·m/m)

(4) 縁端曲げによるもの

Mrd=
$$10.155 \times (-0.061) + 9.737 \times (-0.061)$$

= $-1.213 \text{ (kN} \cdot \text{m/m)}$

(5) 曲げモーメントの合計

2-3-11 a 5点での活荷重による曲げモーメント

(1) 片側荷重の載荷位置(左版端部からの距離 m)

T荷重台数: 2台

影響値 1 影響値 2 載荷位置 1 (アーム長) 載荷位置 2 (アーム長) 0.2427 0.4330 2.150 3.900

 0. 2827
 0. 2098
 4. 900
 6. 650

T荷重による影響線縦距の合計: 1.1682

- (2) 張出部の活荷重
 - a)群集荷重による縁端荷重 PgL= 0.600 × 3.500 = 2.100 (kN/m)

b)群集荷重による縁端曲げ荷重 mgL= 2.100 × 0.600/2 = 0.630 (kN·m/m)

(3) 群集荷重によるもの

(4) 高欄推力によるもの

M11= $3.563 \times (-0.061) = -0.217$ (kN·m/m) M12= $3.563 \times (-0.061) = -0.217$ (kN·m/m)

- (5) 輪荷重によるもの
 - a) 片側荷重 M11= 1.1682×100.00=116.818 (kN·m/m)
 - b) 衝撃係数 M12= 116.818× 0.345= 40.302 (kN·m/m)
 - c) 支間に対する割増し M13=(116.818+40.302)×1.000=157.120 (kN·m/m)
- (6) 曲げモーメントの合計

M1g= 6. 482+157. 120+ 1. 915 = 165. 52 (kN·m/m)

2-3-12 a 9点における影響線面積

区間	区間長	a	b	С	d
1	0. 000 0. 975 0. 725	0. 082 0. 099 0. 114	0. 076 0. 091 0. 105	0. 059 0. 070 0. 080	0. 032 0. 038 0. 044
小計	1. 700	0. 1654	0. 1525	0. 1173	0.0638
2	0. 200	0. 118	0. 109	0.083	0.046
小計	0. 200	0. 0232	0.0214	0.0163	0.0090
3	0. 050 0. 975 0. 975 0. 975 0. 975 0. 975 0. 975	0. 119 0. 148 0. 187 0. 242 0. 324 0. 469 0. 972	0. 110 0. 136 0. 170 0. 215 0. 273 0. 334 0. 352	0. 084 0. 102 0. 124 0. 153 0. 178 0. 193 0. 195	0. 046 0. 053 0. 065 0. 077 0. 086 0. 091 0. 090
小計	5. 900	1. 8735	1. 3305	0.8714	0. 4313

2-3-13 a 9点における影響線体積

(1) 区間 I

V1 =
$$2 \times \frac{1.000}{3} \times \{ 0.165 + 4 \times (0.152 + 0.064) + 2 \times 0.117 \} = 0.842$$

(2) 区間Ⅱ

$$V2 = 2 \times \frac{1.000}{3} \times \{ 0.023 + 4 \times (0.021 + 0.009) + 2 \times 0.016 \} = 0.117$$

(3) 区間Ⅲ

影響線体積は、理論的に L²/8となるので車道部で調整する

$$V3 = \frac{8.000^{2}}{8} - (0.842 + 0.117) = 7.041$$

2-3-14 a 9点での死荷重による曲げモーメント

(1) 主桁自重によるもの

 $Mod=1/8 \times 15.925 \times 8.000^{2}=127.400 \text{ (kN·m/m)}$

- (2) 橋面死荷重によるもの
 - a) 左歩道によるもの

$$Mg1= 0.842 \times 3.450= 2.905 (kN \cdot m/m)$$

b) 左縁石によるもの

$$Mg2= 0.117 \times 4.900= 0.573 \text{ (kN} \cdot \text{m/m)}$$

c) 車 道によるもの

$$Mg3=7.041\times 1.125=7.921 \text{ (kN}\cdot\text{m/m)}$$

d) 橋面死荷重合計

(3) 縁端荷重によるもの

Mpd=
$$(16.030 \times 0.052 + 14.635 \times 0.254) \times 8.000$$

= 36.407 (kN·m/m)

(4) 縁端曲げによるもの

Mrd=
$$10.155 \times (-0.083) + 9.737 \times 0.325$$

= $2.322 \text{ (kN} \cdot \text{m/m)}$

(5) 曲げモーメントの合計

2-3-15 a 9点での活荷重による曲げモーメント

(1) 片側荷重の載荷位置(左版端部からの距離 m)

T荷重台数: 2台

影響値1 影響値2 載荷位置1(アーム長) 載荷位置2(アーム長) 0.9720 0.4058 8.150(0.350) 6.400 0.2862 0.1770 5.400 3.650

T荷重による影響線縦距の合計: 1.8410

- (2) 張出部の活荷重
 - a) 群集荷重による縁端荷重 PgL= 0.600 × 3.500 = 2.100 (kN/m)
 - b)群集荷重による縁端曲げ荷重 mgL= 2.100 × 0.600/2 = 0.630 (kN·m/m)
 - c)片側荷重による縁端曲げ荷重 m1R=(2×100.00/8.000) × 0.350 = 8.750 (kN·m/m)
- (3) 群集荷重によるもの

(4) 高欄推力によるもの

M11= $3.563 \times (-0.083) = -0.296 \text{ (kN} \cdot \text{m/m)}$ M12= $3.563 \times 0.325 = 1.158 \text{ (kN} \cdot \text{m/m)}$

- (5) 輪荷重によるもの
 - a)縁端曲げ荷重 m13R= 8.750× 0.325 = 2.844(kN·m/m)
 - b) 片側荷重 M11= 1.8410×100.00=184.100 (kN·m/m)
 - c) 衝撃係数 M12=(184.100+ 2.844)× 0.345= 64.496 (kN·m/m)
 - d) 支間に対する割増し M13=(184.100+2.844+64.496)×1.000=251.440 (kN·m/m)
- (6) 曲げモーメントの合計

M1g= 3.356+ 1.158+251.440+ 0.874= $256.83 \text{ (kN} \cdot \text{m/m)}$

2-3-16 設計曲げモーメント値

表-4 橋軸方向 曲げモーメント

	a 1	a 5	a 9
死荷重曲げモーメント	185.63 kN·m/m	167.76 kN·m/m	177.53 kN·m/m
活荷重曲げモーメント	117.24 kN·m/m	165.52 kN·m/m	256.83 kN·m/m
設計曲げモーメント	302.87 kN·m/m	333.27 kN·m/m	434.36 kN·m/m

2-4 橋軸直角方向Myの影響値 2-4-1 a5点における影響値

表-5.1 My影響値 $(\nu = 1/6)$

1.00:1	1	2	3	4	5
a b c d	-0. 059 -0. 053 -0. 038 -0. 020	-0. 030 -0. 025 -0. 016 -0. 007	0. 006 0. 010 0. 012 0. 007	0. 068 0. 069 0. 048 0. 023	0. 133 0. 069 0. 031

表-5.2 My影響値

 $(\nu = 1/6)$

1.25:1	1	2	3	4	5
a b c d	-0. 067 -0. 059 -0. 041 -0. 021	-0. 032 -0. 025 -0. 014 -0. 006	0. 010 0. 015 0. 015 0. 010	0. 075 0. 072 0. 048 0. 022	0. 123 0. 062 0. 027

表-5.3 My影響値(補間値) (ν=1/6)

1.03:1	1	2	3	4	5
a b c d	-0. 060 -0. 054 -0. 038 -0. 020	-0. 030 -0. 025 -0. 016 -0. 007	0. 006 0. 011 0. 012 0. 007	0. 069 0. 069 0. 048 0. 023	0. 132 0. 068 0. 031

表-5.4 尖端値

[L:B=1.00:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
а	0.420	0.400	0.360	0.330	0. 290	0. 270

表-5.5 尖端值

[L:B=1.25:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	0.430	0.410	0.370	0.340	0.300	0. 280

表-5.6 尖端値(補間値) [L:B=1.03:1]

c/B	0. 015	0.020	0.030	0.040	0.060	0.080
a	0. 421	0.401	0.361	0.331	0. 291	0. 271

表-5.7 尖端値(補間値)

c/B	0.015	0.020	0.019
a	0. 421	0. 401	0.405

2-4-2 縁端載荷による係数値

表-6.1 縁端荷重Pr

L : B	$(\nu = 1/6)$	a1	а5	a9
1. 00 : 1 1. 25 : 1 1. 03 : 1	My PrL		-0. 036 -0. 038 -0. 036	

表-6.2 縁端曲げmr

L : B	$(\nu = 1/6)$	a1	a5	a9
1.00 : 1	Му	-1.000	-0. 151	_
1. 25 : 1 1. 03 : 1	mr	-1. 000 -1. 000		<u> </u>

表-6.3 等分布荷重(p)

L : B	$(\nu = 1/6)$	a1	a5	a9
1.00 : 1 1.25 : 1 - 1.03 : 1	My p L2		0. 0158 0. 0130 0. 0155	

2-4-3 a 5点における影響線面積

区間	区間長	a	b	С	d
1	0. 000	-0. 060	-0. 054	-0. 038	-0. 020
	0. 975	-0. 030	-0. 025	-0. 016	-0. 007
	0. 725	-0. 003	0. 002	0. 005	0. 003
(+)	1.700	0. 0000	0. 0000	0. 0004	0. 0004
(-)		-0. 0559	-0. 0470	-0. 0308	-0. 0149
小計		-0. 0559	-0. 0469	-0. 0304	-0. 0145
2	0. 200	0.004	0.009	0. 011	0.006
(+)	0. 200	0. 0002	0. 0011	0. 0015	0. 0010
(-)		-0. 0001	0. 0000	0. 0000	0. 0000
小計		0. 0001	0. 0011	0. 0015	0. 0010
3	0. 050	0.006	0. 011	0. 012	0. 007
	0. 975	0.069	0. 069	0. 048	0. 023
	0. 975	0.405	0. 132	0. 068	0. 031
	0. 975	0.069	0. 069	0. 048	0. 023
	0. 975	0.006	0. 011	0. 012	0. 007
	0. 975	-0.030	-0. 025	-0. 016	-0. 007
	0. 975	-0.060	-0. 054	-0. 038	-0. 020
(+)	5. 900	0. 5360	0. 2761	0. 1747	0. 0839
(-)		-0. 0561	-0. 0470	-0. 0308	-0. 0149
小計		0. 4800	0. 2291	0. 1439	0. 0691

2-4-4 a 5点における影響線体積

(1) 区間 I

$$V1(+) = 2 \times \frac{1.000}{3} \times \{ 0.000 + 4 \times (0.000 + 0.000) + 2 \times 0.000 \} = 0.002$$

$$V1(-) = 2 \times \frac{1.000}{3} \times \{ -0.056 + 4 \times (-0.047 - 0.015) + 2 \times -0.031 \} = -0.243$$

$$V1 = 0.002 + (-0.243) = -0.241$$

(2) 区間Ⅱ

$$V2(+) = 2 \times \frac{1.000}{3} \times \{ 0.000 + 4 \times (0.001 + 0.001) + 2 \times 0.002 \} = 0.008$$

$$V2(-) = 2 \times \frac{1.000}{3} \times \{ -0.000 + 4 \times (0.000 + 0.000) + 2 \times 0.000 \} = -0.000$$

$$V2 = 0.008 + (-0.000) = 0.008$$

(3) 区間Ⅲ

影響線体積は、理論的にL²× 0.0155となるので車道部で調整する

$$V3(+) = 8.000^{2} \times 0.0155 - (-0.241 + 0.008 - 0.243) = 1.468$$

$$V3(-)=2\times\frac{1.000}{3}\times \{-0.056+4\times(-0.047-0.015)+2\times-0.031\} =-0.243$$

$$V3 = 1.468 + (-0.243) = 1.225$$

2-4-5 a 5点での死荷重による曲げモーメント

(1) 主桁自重によるもの

Mod= $0.0155 \times 15.925 \times 8.000^{2} = 15.798 \text{ (kN·m/m)}$

- (2) 橋面死荷重によるもの
 - a) 左歩道によるもの

$$Mg1=-0.241 \times 3.450=-0.831 \text{ (kN} \cdot \text{m/m)}$$

b) 左縁石によるもの

$$Mg2= 0.008 \times 4.900= 0.039 \text{ (kN} \cdot \text{m/m)}$$

c) 車 道によるもの

$$Mg3= 1.225 \times 1.125= 1.378 \text{ (kN·m/m)}$$

d) 橋面死荷重合計

$$Mgd=-0.831+0.039+1.378$$

= 0.586 (kN·m/m)

(3) 縁端荷重によるもの

Mpd={
$$16.030 \times (-0.036) + 14.635 \times (-0.036)$$
} × 8.000
= $-8.832 \text{ (kN} \cdot \text{m/m)}$

(4) 縁端曲げによるもの

Mrd= 10.155
$$\times$$
 (-0.160) + 9.737 \times (-0.160) = -3.183 (kN·m/m)

(5) 曲げモーメントの合計

Mdg=15. 798+ 0. 586- 8. 832- 3. 183
= 4. 37
$$(kN \cdot m/m)$$

2-4-6 a 5点での活荷重による曲げモーメント (正曲げ)

(1) 片側荷重の載荷位置(左版端部からの距離 m)

T荷重台数: 2台

影響値1 影響値2 載荷位置1(アーム長) 載荷位置2(アーム長)

 0. 0189
 0. 4050
 2. 150
 3. 900

 0. 0674
 -0. 0235
 4. 900
 6. 650

T荷重による影響線縦距の合計: 0.4678

- (2) 張出部の活荷重
 - a) 群集荷重による縁端荷重 PgL= 0.600 × 3.500 = 2.100 (kN/m)

b)群集荷重による縁端曲げ荷重 mgL= 2.100 × 0.600/2 = 0.630 (kN·m/m)

(3) 群集荷重によるもの

 $M11=(0.002+0.008) \times 3.500 = 0.035 \text{ (kN} \cdot \text{m/m})$ $M12L=2.100 \times (-0.036) \times 8.000=-0.605 \text{ (kN} \cdot \text{m/m})$ $m12L=0.630 \times (-0.160) = -0.101 \text{ (kN} \cdot \text{m/m})$

(4) 高欄推力によるもの

M11= $3.563 \times (-0.160) = -0.570 \text{ (kN·m/m)}$ M12= $3.563 \times (-0.160) = -0.570 \text{ (kN·m/m)}$

- (5) 輪荷重によるもの
 - a) 片側荷重 M11= 0.4678×100.00= 46.777 (kN·m/m)
 - b) 衝撃係数 M12= 46.777× 0.345= 16.138 (kN·m/m)
 - c) 支間に対する割増し M13=(46.777+16.138)×1.000=62.915(kN·m/m)
- (6) 曲げモーメントの合計

M1g= 0.035+ 62.915 = 62.95 (kN·m/m)

- (7) 衝突荷重によるもの
 - a) 輪荷重 M11L=-0.041×100.00=-4.154 (kN·m/m) M11R=-0.041×100.00=-4.154 (kN·m/m)
 - b) 衝突荷重 M2L=27.750×(-0.160)=-4.440 (kN·m/m) M2R=27.750×(-0.160)=-4.440 (kN·m/m)
- (8) 曲げモーメントの合計

正曲げは発生しない

2-4-7 a 5点での活荷重による曲げモーメント (負曲げ)

(1) 片側荷重の載荷位置(左版端部からの距離 m)

T荷重台数: 1台

影響値1 影響値2 載荷位置1 (アーム長) 載荷位置2 (アーム長) -0.0600 -0.0143 8.150 (0.350) 6.400 T荷重による影響線縦距の合計:-0.0743

- (2) 張出部の活荷重
 - a) 群集荷重による縁端荷重 PgL= 0.600 × 3.500 = 2.100 (kN/m)
 - b)群集荷重による縁端曲げ荷重 mgL= 2.100 × 0.600/2 = 0.630 (kN·m/m)
 - c)片側荷重による縁端曲げ荷重 m1R=(2×100.00/8.000) × 0.350 = 8.750 (kN·m/m)
- (3) 群集荷重によるもの

$$M11=(-0.243+0.000) \times 3.500 = -0.850 \text{ (kN} \cdot \text{m/m})$$

 $M12L=2.100 \times (-0.036) \times 8.000 = -0.605 \text{ (kN} \cdot \text{m/m})$
 $m12L=0.630 \times (-0.160) = -0.101 \text{ (kN} \cdot \text{m/m})$

(4) 高欄推力によるもの

M11=
$$3.563 \times (-0.160) = -0.570 \text{ (kN} \cdot \text{m/m)}$$

M12= $3.563 \times (-0.160) = -0.570 \text{ (kN} \cdot \text{m/m)}$

- (5) 輪荷重によるもの
 - a) 縁端曲げ荷重 m13R= 8.750×(-0.160)= -1.400 (kN·m/m)
 - b) 片側荷重 M11=-0.0743×100.00= -7.431 (kN·m/m)
 - c) 衝撃係数 M12=(-7.431-1.400)× 0.345=-3.047 (kN·m/m)
 - d) 支間に対する割増し M13=(-7.431-1.400-3.047)×1.000=-11.878 (kN·m/m)
- (6) 曲げモーメントの合計

M1g=- 0.850- 0.570- 0.570-11.878- 0.605- 0.101
= -14.57 (
$$kN \cdot m/m$$
)

- (7) 衝突荷重によるもの
 - a) 輪荷重 M11L=-0.036×100.00=-3.600 (kN·m/m) M11R=-0.036×100.00=-3.600 (kN·m/m)
 - b) 衝突荷重 M2L=27.750×(-0.160)=-4.440 (kN·m/m) M2R=27.750×(-0.160)=-4.440 (kN·m/m)
- (8) 曲げモーメントの合計

$$M1gC = -3.600 - 3.600 - 4.440 - 4.440$$

=-16.080 (kN·m/m)

2-4-8 設計曲げモーメント値

表-7 橋軸直角方向 曲げモーメント

	最 大	最 小
死荷重曲げモーメント	4.37 kN·m/m	4.37 kN·m/m
活荷重曲げモーメント	62.95 kN·m/m	-14.57 kN·m/m
衝突曲げモーメント	-17.19 kN⋅m/m	-16.08 kN·m/m
設計時曲げモーメント	67.32 kN·m/m	-10.20 kN·m/m
衝突時曲げモーメント	-12.82 kN·m/m	-11.71 kN·m/m

3章 断面の設計

3-1 橋軸方向の設計 (死荷重時)

3-1-1 断面計算

橋軸方向の設計曲げモーメントは、表4のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対 し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

必要鉄筋量
$$Asm = \frac{185.63 \times 10^6}{100.0 \times 7/8 \times 585} = 3627 \text{ (mm²/m)}$$

(3) 配置鉄筋量

D32(AsO= 794.2 mm²)を 125mmピッチに配置する

$$As = \frac{794.2 \times 1000}{125} = 6354 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} (-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}})$$

$$= \frac{15.0 \times 6354}{1000} (-1 + \sqrt{1 + \frac{2 \times 1000 \times 585}{15.0 \times 6354}})$$

$$= 252.0 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times 185.63 \times 10^{6}}{1000 \times 252.0 \times (585 - 252.0/3)}$$

$$= 2.94 \text{ (N/mm²)} < 8.00 \text{ (N/mm²)}$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{185.63 \times 10^{6}}{6354 \times (585 - 252.0/3)}$$

= 58.3 (N/mm²) < 100.0 (N/mm²)

3-2 橋軸方向の設計 (設計時)

3-2-1 断面計算

橋軸方向の設計曲げモーメントは、表4のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

Asm =
$$\frac{434.36 \times 10^6}{140.0 \times 7/8 \times 585} = 6061 \text{ (mm}^2/\text{m})$$

(3) 配置鉄筋量

D32(As0= 794.2 mm²)を 125mmピッチに配置する

$$As = \frac{794.2 \times 1000}{125} = 6354 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} (-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}})$$

$$= \frac{15.0 \times 6354}{1000} (-1 + \sqrt{1 + \frac{2 \times 1000 \times 585}{15.0 \times 6354}})$$

$$= 252.0 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times 434.36 \times 10^{6}}{1000 \times 252.0 \times (585 - 252.0/3)}$$

$$= 6.88 \text{ (N/mm}^{2}) < 8.00 \text{ (N/mm}^{2})$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{434.36 \times 10^{6}}{6354 \times (585 - 252.0/3)}$$

$$= 136.4 \text{ (N/mm}^{2}) < 140.0 \text{ (N/mm}^{2})$$

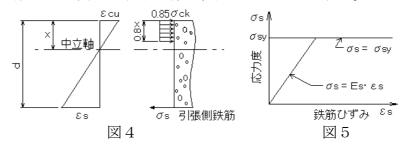
3-2-2 終局荷重作用時の照査

(1) 終局荷重作用時の曲げモーメント

終局荷重作用時の荷重の組合せは次の通りである。

- a) 1.3×(死荷重)+2.5×(活荷重+衝擊)
- b) 1.7×(死荷重+活荷重+衝擊)

終局荷重作用時の曲げモーメントは次のようになる。


 $Md = 185.63 (kN \cdot m/m)$

 $M1 = 256.83 \text{ (kN} \cdot \text{m/m)}$

- a) Mu=1.3 \times 185.63 +2.5 \times 256.83 = 883.39 (kN·m/m)
- b) Mu=1. $7 \times (185.63 + 256.83)$ $= 752.18 (kN \cdot m/m)$
- (2) 断面の破壊抵抗曲げモーメントの計算式

長方形断面形状の場合の破壊抵抗曲げモーメントは、下記の仮定 により算出される。

- 1) 維ひずみは中立軸からの距離に比例する。
- 2) コンクリートの引張強度は無視する。
- 3) コンクリートの圧縮応力度分布は、図4のとおりとする。4) 鉄筋の応力度-ひずみ曲線は、図5のとおりとする。

a) 終局つり合い鋼材比

Pb =
$$\frac{\text{Asb}}{\text{bd}}$$

= $0.68 \times \frac{\epsilon \text{ cu}}{\epsilon \text{ cu} + \epsilon \text{ sy}} \times \frac{\sigma \text{ ck}}{\sigma \text{ sy}}$

ここで、 Pb: 終局つり合い鋼材比

Asb: 終局つり合い引張鋼材量(引張鋼材の合計断面積) (mm²)

b: 圧縮フランジの有効幅 (mm) d: 部材断面の有効高 (mm) ε cu: コンクリートの終局ひずみ 0.0035

 ϵ sy : 引張鋼材の降伏ひずみ= σ sy/Es

Es: 引張鋼材のヤング係数 2.000×10⁵ (N/mm²) σ sy : 引張鋼材の降伏点 $345.0 \, (N/mm^2)$ σck: コンクリートの設計基準強度 24.0 (N/mm²) b) 引張鋼材が終局つり合い鋼材量以下の場合の破壊抵抗曲げモ ーメントの算式

Mu = As·
$$\sigma$$
 sy (d - $\frac{1}{2} \times \frac{\text{As} \cdot \sigma \text{ sy}}{0.85 \cdot \sigma \text{ ck} \cdot \text{b}}$)

ここで、 Mu: 破壊抵抗モーメント (N·mm) σ sy: 鉄筋の降伏点 (N/mm²) As: 鉄筋の断面積 (mm²) d: 部材の有効高 (mm)

c) 引張鋼材量が終局つり合い鋼材量以上の場合の破壊曲げモー メントの算式

$$Mu = As \cdot \sigma s (d - kx)$$

ここで、 σs : 鋼材の引張応力度 (N/mm^2) kx: 矩型断面であるので、 $kx = 0.4 \cdot x$ より算出する。 ただし、中立軸(x) は以下の式を解いて算出する。

 $0.68 \cdot \sigma \text{ ck} \cdot \text{b} \cdot \text{x}^2 + \text{As} \cdot \text{Es} \cdot \epsilon \text{ cu} \cdot \text{x} - \text{As} \cdot \text{Es} \cdot \text{d} \cdot \epsilon \text{ cu} = 0$

(3) 断面の破壊抵抗曲げモーメントの計算

Pb =
$$\frac{\text{Asb}}{\text{bd}}$$
 = $\frac{6354}{1000 \times 585}$ = 0.010862
 $\epsilon \text{ sy} = \frac{\sigma \text{ sy}}{\text{E}}$ = $\frac{345.0}{2.000 \times 10^5}$ = 0.001725

Pb' =
$$0.68 \times \frac{0.0035}{0.0035 + 0.001725} \times \frac{24.0}{345.0}$$

$$= 0.031687 > Pb = 0.010862$$

ゆえに引張鋼材量が終局つり合い鋼材量以下である。

Mu = As·
$$\sigma$$
 sy (d- $\frac{1}{2}$ × $\frac{As·\sigma$ sy
0.85· σ ck·b
= 6354×345.0× (585 - $\frac{1}{2}$ × $\frac{6354 \times 345.0}{0.85 \times 24.0 \times 1000}$) ×10⁻⁶
= 1164.62 (kN·m/m)

(4) 破壊に対する安全率

破壊抵抗曲げモーメント =
$$\frac{1164.62}{883.39}$$
 = 1.32> 1.0
したがって、安全である。

3-3 橋軸直角方向の設計 (死荷重時)

3-3-1 断面計算

橋軸直角方向の設計曲げモーメントは、表7のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

必要跃肋重
$$Asm = \frac{4.37 \times 10^6}{100.0 \times 7/8 \times 565} = 88 \text{ (mm}^2/\text{m})$$

(3) 配置鉄筋量

D16(AsO= 198.6 mm²)を 150mmピッチに配置する

$$As = \frac{198.6 \times 1000}{150} = 1324 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} \left(-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}}\right)$$

$$= \frac{15.0 \times 1324}{1000} \left(-1 + \sqrt{1 + \frac{2 \times 1000 \times 565}{15.0 \times 1324}}\right)$$

$$= 131.3 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times 4.37 \times 10^{6}}{1000 \times 131.3 \times (565 - 131.3/3)}$$

$$= 0.13 \text{ (N/mm}^{2}) < 8.00 \text{ (N/mm}^{2})$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{4.37 \times 10^{6}}{1324 \times (565 - 131.3/3)}$$

= 6.3 (N/mm^2) < 100.0 (N/mm^2)

3-4 橋軸直角方向の設計 (設計時正曲げ)

3-4-1 断面計算(設計時)

橋軸直角方向の設計曲げモーメントは、表7のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

公安欽加里
$$Asm = \frac{67.32 \times 10^6}{140.0 \times 7/8 \times 565} = 973 \text{ (mm}^2\text{/m)}$$

(3) 配置鉄筋量

D16(AsO= 198.6 mm²)を 150mmピッチに配置する

$$As = \frac{198.6 \times 1000}{150} = 1324 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} (-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}})$$

$$= \frac{15.0 \times 1324}{1000} (-1 + \sqrt{1 + \frac{2 \times 1000 \times 565}{15.0 \times 1324}})$$

$$= 131.3 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times 67.32 \times 10^{6}}{1000 \times 131.3 \times (565 - 131.3/3)}$$

$$= 1.97 \text{ (N/mm}^{2}) < 8.00 \text{ (N/mm}^{2})$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{67.32 \times 10^{6}}{1324 \times (565 - 131.3/3)}$$

$$= 97.5 \text{ (N/mm}^{2}) < 140.0 \text{ (N/mm}^{2})$$

3-4-2 断面計算 (衝突時)

橋軸直角方向の設計曲げモーメントは、表7のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

橋軸直角方向(衝突時)検討時に正曲げが発生しないので床版下面については最小鉄筋量、又は死荷重時の鉄筋を配置するものとする。

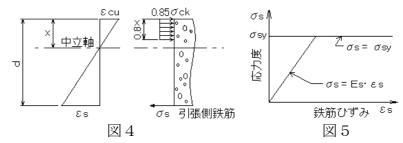
3-4-3 終局荷重作用時の照査

(1) 終局荷重作用時の曲げモーメント

終局荷重作用時の荷重の組合せは次の通りである。

- a) 1.3×(死荷重)+2.5×(活荷重+衝擊)
- b) 1.0×(死荷重)+2.5×(活荷重+衝擊)
- c) 1.7×(死荷重+活荷重+衝擊)

終局荷重作用時の曲げモーメントは次のようになる。


$$Md=4.37 (kN \cdot m/m)$$

 $M1 = 62.95 (kN \cdot m/m)$

- a) Mu=1.3 \times 4.37 +2.5 \times 62.95 = 163.05 (kN·m/m)
- b) Mu=1.0 \times 4.37 +2.5 \times 62.95 = 161.74 (kN·m/m)
- c) Mu=1.7 \times (4.37+ 62.95) = 114.44 (kN·m/m)
- (2) 断面の破壊抵抗曲げモーメントの計算式

長方形断面形状の場合の破壊抵抗曲げモーメントは、下記の仮定 により算出される。

- 1) 維ひずみは中立軸からの距離に比例する。
- 2) コンクリートの引張強度は無視する。
- 3) コンクリートの圧縮応力度分布は、図4のとおりとする。
- 4) 鉄筋の応力度ーひずみ曲線は、図5のとおりとする。

a) 終局つり合い鋼材比

$$Pb = \frac{Asb}{bd}$$

$$= 0.68 \times \frac{\epsilon \, cu}{\epsilon \, cu + \epsilon \, sy} \times \frac{\sigma \, ck}{\sigma \, sy}$$

ここで、 Pb: 終局つり合い鋼材比

Asb: 終局つり合い引張鋼材量(引張鋼材の合計断面積) (mm²)

b: 圧縮フランジの有効幅 (mm) d: 部材断面の有効高 (mm) ε cu: コンクリートの終局ひずみ 0.0035 ε sy: 引張鋼材の降伏ひずみ = σ sy/Es

Es: 引張鋼材のヤング係数 2.000×10⁵ (N/mm²) σsy: 引張鋼材の降伏点 345.0 (N/mm²) σck: コンクリートの設計基準強度 24.0 (N/mm²)

b) 引張鋼材が終局つり合い鋼材量以下の場合の破壊抵抗曲げモ ーメントの算式

Mu = As·
$$\sigma$$
 sy (d - $\frac{1}{2} \times \frac{\text{As} \cdot \sigma \text{ sy}}{0.85 \cdot \sigma \text{ ck} \cdot \text{b}}$)

ここで、 Mu: 破壊抵抗モーメント (N·mm) σsy: 鉄筋の降伏点 (N/mm²) As: 鉄筋の断面積 (mm²) d: 部材の有効高 (mm)

c) 引張鋼材量が終局つり合い鋼材量以上の場合の破壊曲げモー メントの算式

$$Mu = As \cdot \sigma s (d - kx)$$

ここで、 σs : 鋼材の引張応力度 (N/mm^2) kx: 矩型断面であるので、 $kx = 0.4 \cdot x$ より算出する。 ただし、中立軸(x) は以下の式を解いて算出する。

 $0.68 \cdot \sigma \text{ ck} \cdot \text{b} \cdot \text{x}^2 + \text{As} \cdot \text{Es} \cdot \epsilon \text{ cu} \cdot \text{x} - \text{As} \cdot \text{Es} \cdot \text{d} \cdot \epsilon \text{ cu} = 0$

(3) 断面の破壊抵抗曲げモーメントの計算

Pb =
$$\frac{\text{Asb}}{\text{bd}} = \frac{1324}{1000 \times 565} = 0.002343$$

 $\varepsilon \text{ sy} = \frac{\sigma \text{ sy}}{\text{E}} = \frac{345.0}{2.000 \times 10^5} = 0.001725$

Pb' =
$$0.68 \times \frac{0.0035}{0.0035 + 0.001725} \times \frac{24.0}{345.0}$$

$$= 0.031687 > Pb = 0.002343$$

ゆえに引張鋼材量が終局つり合い鋼材量以下である。

Mu = As·
$$\sigma$$
 sy (d- $\frac{1}{2}$ × $\frac{\text{As} \cdot \sigma$ sy}{0.85 \cdot \sigma \text{ ck} \cdot \text{b}})
= 1324×345.0× (565 - $\frac{1}{2}$ × $\frac{1324 \times 345.0}{0.85 \times 24.0 \times 1000}$) ×10⁻⁶
= 252.97 (kN·m/m)

(4) 破壊に対する安全率

破壊抵抗曲げモーメント =
$$\frac{252.97}{8$$
局荷重作用時曲げモーメント = $\frac{252.97}{163.05}$ = 1.55 > 1.0 したがって、安全である。

3-5 橋軸直角方向の設計 (設計時負曲げ)

3-5-1 断面計算(設計時)

橋軸直角方向の設計曲げモーメントは、表7のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

$$Asm = \frac{-10.21 \times 10^6}{140.0 \times 7/8 \times 565} = 147 \text{ (mm}^2/\text{m)}$$

(3) 配置鉄筋量

D 6(AsO= 31.7 mm²)を 150mmピッチに配置する

$$As = \frac{31.7 \times 1000}{150} = 211 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} (-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}})$$

$$= \frac{15.0 \times 211}{1000} (-1 + \sqrt{1 + \frac{2 \times 1000 \times 565}{15.0 \times 211}})$$

$$= 56.8 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times (-10.20) \times 10^{6}}{1000 \times 56.8 \times (565 - 56.8/3)}$$

$$= 0.66 \text{ (N/mm}^{2}) < 8.00 \text{ (N/mm}^{2})$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{-10.20 \times 10^{6}}{211 \times (565 - 56.8/3)}$$

$$= 88.6 \text{ (N/mm}^{2}) < 140.0 \text{ (N/mm}^{2})$$

3-5-2 断面計算 (衝突時)

橋軸直角方向の設計曲げモーメントは、表7のようになる。これらに対する各点での鉄筋量は厳密には変化するが、実際の施工上からは繁雑であるので、最大曲げモーメントが生じる点での曲げモーメントに対し主鉄筋量を計算し、全幅にわたり全て同一配置とする。

(1) 断面寸法および許容値

(2) 必要鉄筋量

$$Asm = \frac{-11.71 \times 10^6}{200.0 \times 7/8 \times 565} = 118 \text{ (mm}^2/\text{m)}$$

(3) 配置鉄筋量

D 6(AsO= 31.7 mm²)を 150mmピッチに配置する

$$As = \frac{31.7 \times 1000}{150} = 211 \text{ (mm}^2\text{)}$$

(4) 応力度の計算(単鉄筋)

$$x = \frac{n \cdot As}{b} \left(-1 + \sqrt{1 + \frac{2b \cdot d}{n \cdot As}}\right)$$

$$= \frac{15.0 \times 211}{1000} \left(-1 + \sqrt{1 + \frac{2 \times 1000 \times 565}{15.0 \times 211}}\right)$$

$$= 56.8 \text{ (mm)}$$

$$\sigma c = \frac{2M}{b \cdot x (d - x/3)}$$

$$= \frac{2 \times (-11.71) \times 10^{6}}{1000 \times 56.8 \times (565 - 56.8/3)}$$

$$= 0.76 \text{ (N/mm²)} < 12.00 \text{ (N/mm²)}$$

$$\sigma s = n \cdot \sigma c \frac{d - x}{x} = \frac{M}{As (d - x/3)}$$

$$= \frac{-11.71 \times 10^{6}}{211 \times (565 - 56.8/3)}$$

 $= 101.6 \text{ (N/mm}^2\text{)} < 200.0 \text{ (N/mm}^2\text{)}$

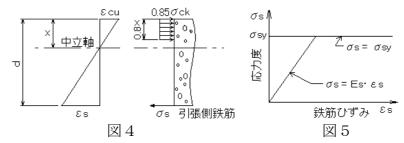
3-5-3 終局荷重作用時の照査

(1) 終局荷重作用時の曲げモーメント

終局荷重作用時の荷重の組合せは次の通りである。

- a) 1.3×(死荷重)+2.5×(活荷重+衝擊)
- b) 1.0×(死荷重)+2.5×(活荷重+衝擊)
- c) 1.7×(死荷重+活荷重+衝擊)

終局荷重作用時の曲げモーメントは次のようになる。


$$Md = 4.37 (kN \cdot m/m)$$

 $M1 = -16.08 \text{ (kN} \cdot \text{m/m)}$

- a) Mu=1.3 \times 4.37 +2.5 \times (-16.08) = -34.52 (kN·m/m)
- b) Mu=1.0 \times 4.37 +2.5 \times (-16.08) = -35.83 (kN·m/m)
- c) Mu=1.7×(4.37 -16.08) = -19.91 $(kN \cdot m/m)$
- (2) 断面の破壊抵抗曲げモーメントの計算式

長方形断面形状の場合の破壊抵抗曲げモーメントは、下記の仮定 により算出される。

- 1) 維ひずみは中立軸からの距離に比例する。
- 2) コンクリートの引張強度は無視する。
- 3) コンクリートの圧縮応力度分布は、図4のとおりとする。
- 4) 鉄筋の応力度ーひずみ曲線は、図5のとおりとする。

a) 終局つり合い鋼材比

$$Pb = \frac{Asb}{bd}$$

$$= 0.68 \times \frac{\epsilon \, cu}{\epsilon \, cu + \epsilon \, sy} \times \frac{\sigma \, ck}{\sigma \, sy}$$

ここで、 Pb: 終局つり合い鋼材比

Asb: 終局つり合い引張鋼材量(引張鋼材の合計断面積) (mm²)

b: 圧縮フランジの有効幅 (mm) d: 部材断面の有効高 (mm) ε cu: コンクリートの終局ひずみ 0.0035 ε sy: 引張鋼材の降伏ひずみ = σ sy/Es

Es: 引張鋼材のヤング係数 2.000×10⁵ (N/mm²) σ sy: 引張鋼材の降伏点 345.0 (N/mm²)

σck: コンクリートの設計基準強度 24.0 (N/mm²)

b) 引張鋼材が終局つり合い鋼材量以下の場合の破壊抵抗曲げモ ーメントの算式

Mu = As·
$$\sigma$$
 sy (d - $\frac{1}{2} \times \frac{\text{As} \cdot \sigma \text{ sy}}{0.85 \cdot \sigma \text{ ck} \cdot \text{b}}$)

ここで、 Mu: 破壊抵抗モーメント (N·mm) σ sy: 鉄筋の降伏点 (N/mm²) As: 鉄筋の断面積 (mm²) d: 部材の有効高 (mm)

c) 引張鋼材量が終局つり合い鋼材量以上の場合の破壊曲げモー メントの算式

$$Mu = As \cdot \sigma s (d - kx)$$

ここで、 σs : 鋼材の引張応力度 (N/mm^2) kx: 矩型断面であるので、 $kx = 0.4 \cdot x$ より算出する。 ただし、中立軸(x) は以下の式を解いて算出する。

 $0.68 \cdot \sigma \text{ ck} \cdot \text{b} \cdot \text{x}^2 + \text{As} \cdot \text{Es} \cdot \epsilon \text{ cu} \cdot \text{x} - \text{As} \cdot \text{Es} \cdot \text{d} \cdot \epsilon \text{ cu} = 0$

(3) 断面の破壊抵抗曲げモーメントの計算

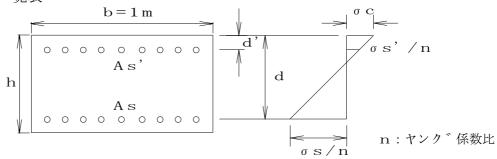
Pb =
$$\frac{\text{Asb}}{\text{bd}} = \frac{211}{1000 \times 565} = 0.000373$$

 $\sigma \text{ sy} = \frac{345.0}{1000 \times 565} = 0.001705$

$$\varepsilon \text{ sy} = \frac{\sigma \text{ sy}}{E} = \frac{345.0}{2.000 \times 10^5} = 0.001725$$

Pb' =
$$0.68 \times \frac{0.0035}{0.0035 + 0.001725} \times \frac{24.0}{345.0}$$

$$= 0.031687 > Pb = 0.000373$$


ゆえに引張鋼材量が終局つり合い鋼材量以下である。

Mu = As·
$$\sigma$$
 sy (d- $\frac{1}{2}$ × $\frac{\text{As} \cdot \sigma$ sy}{0.85 \cdot \sigma \text{ ck} \cdot \text{b}})
= 211×345.0× (565 - $\frac{1}{2}$ × $\frac{211 \times 345.0}{0.85 \times 24.0 \times 1000}$) ×10⁻⁶
= -41.00 (kN·m/m)

(4) 破壊に対する安全率

破壊抵抗曲げモーメント =
$$\frac{-41.00}{8$$
 = 1.14> 1.0
したがって、安全である。

3-6 計算結果一覧表

	計算方向		橋軸方向	橋軸直角 - 正曲げ	橋軸直角 - 負曲げ
	必要鉄筋量	(mm^2)	6061	973	147
引張側	d 鉄筋径・ピッチ 鉄筋量 As	(mm) (mm) (mm ²)	585 D32@ 125 6354	565 D16@ 150 1324	565 D 6@ 150 211
圧縮側	d' 鉄筋径・ピッチ 鉄筋量 As'	(mm) (mm) (mm ²)			
死	曲げモーメント M	(kN⋅m)	185. 63	4. 37	4. 37
死荷重時	応 σc (σca) 力 σs (σsa) 度 σs'(σsa)	(N/mm²) (") (")	2. 94 < (8. 00) 58. 3 < (100. 0)	0. 13 < (8. 00) 6. 3 < (100. 0)	
設	曲げモーメント M	(kN⋅m)	434. 36	67. 32	-10. 20
計時	応 σc (σca) 力 σs (σsa) 度 σs'(σsa)	(N/mm²) (") (")	6. 88 < (8. 00) 136. 4 < (140. 0)	1.97 < (8.00) 97.5 < (140.0)	0.66 < (8.00) 88.6 < (140.0)
衝	曲げモーメント M	(kN⋅m)		-12.82	-11.71
突時	応 σc (σca) 力 σs (σsa) 度 σs'(σsa)	(N/mm²) (") (")			0.76 < (12.00) 101.6 < (200.0)
一破場	高時モーメント Mu 裏抵抗モーメント Mr と率 Mr∕Mu	(kN·m) (kN·m)	883. 39 1164. 62 1. 32	163. 05 252. 97 1. 55	-35. 83 -41. 00 1. 14

ただし、必要鉄筋量は、単鉄筋として算出した鉄筋量を示す。

4 章 下部工設計用反力の計算

```
7.800 \times 0.650 \times 24.500 \times 8.500 / 2
桁自重
                                                                   527.91 (kN)
        1/2 \times (0.200+0.350) \times 1.100 \times 24.500 \times 8.500/2 =
左張出
                                                                    31.50 (kN)
        1/2 \times (0.200 + 0.350) \times 1.100 \times 24.500 \times 8.500/2 =
右張出
                                                                    31.50 (kN)
自重による反力
                                                         計
                                                                   590.91 (kN)
左地覆
          0.600 \times 0.300 \times 24.500 \times 8.500 / 2
                                                                    18.74 (kN)
                                                               =
左歩道
          2.300\times0.150\times23.000\times8.500/2
                                                                    33.72 (kN)
左縁石
          0.200\times0.200\times24.500\times8.500/2
                                                                     4. 17 (kN)
車 道
          6.500 \times 0.050 \times 22.500 \times 8.500 / 2
                                                                    31.08 (kN)
右地覆
          0.600 \times 0.300 \times 24.500 \times 8.500 / 2
                                                                    18.74 (kN)
左水切
          0.100 \times 0.220 \times 24.500 \times 8.500 / 2
                                                                      2.29 (kN)
                                                               =
          0.100 \times 0.220 \times 24.500 \times 8.500 / 2
                                                                      2.29 (kN)
右水切
左高欄
          0.600 \times 8.500 / 2
                                                                      2.55 (kN)
右高欄
          0.600 \times 8.500 / 2
                                                                      2.55 (kN)
添架物1
          1.000 \times 8.500 / 2
                                                                      4.25 (kN)
添架物2
         1.000 \times 8.500 / 2
                                                                      4.25 (kN)
橋面死荷重による反力
                                                        計
                                                                   124.63 (kN)
死荷重合計
                                                        計
                                                                   715.54 (kN)
T荷重
          (6.500+0.5)/2.75
                                                                         2 (台)
          100.00 \times 2 \times 2
                                                                   400.00 (kN)
L荷重
        P 1 荷重
           \{5.500+(6.500-5.500)/2\}\times 12
                                                                    72.00 (kN/m)
          72.000 \times 6.000 \times (8.250 - 6.000/2) / 8.000
                                                                   283.50 (kN)
        P 2 荷重
           \{5.500+(6.500-5.500)/2\}\times 3.50
                                                                    21.00 \text{ (kN/m)}
          21.000 \times 8.250 \times 8.250 / 2 / 8.000
                                                                    89.33 (kN)
群集荷重 2.500× 3.500× 8.250× 8.250/2/ 8.000
                                                                    37.22 (kN)
活荷重合計(T荷重)
                                                        計
                                                                   437. 22 (kN)
橋台反力
                                                               = 1152.76 \text{ (kN)}
```