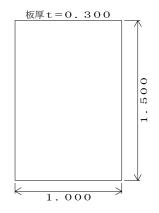
目 次

入力データ	_ 1
1-1 基本条件	1
1-2 形状及び断面諸元	1
1-3 コンクリート材料	1
1-4 鉄筋材料	1
1-5 荷重条件	2
1-6 配筋データ	2
断面力	_ 3
2-1 計算結果	_ 3
断面照査	15
3-1 計算結果	_ 15
	1-2 形状及び断面諸元

タイトル 土木学会_四辺固定板


1 入力データ

1-1 基本条件

適用基準 土木学会支持条件 四辺固定板

せん断照査 する 配筋方法 単鉄筋

1-2 形状及び断面諸元

短辺長	Lx	=	1.000	(m)
長辺長	Ly	=	1.500	(m)
板厚	t	=	0.300	(m)
ポアソン比	ν	=	0.30	
ヤング係数比	n	=	15.00	

1-3 コンクリート材料

材料名			18	
設計基準強度	$\sigma_{\rm ck}$	=	18.0	(N/mm^2)
許容曲げ圧縮応力度	σса	=	7.00	(N/mm^2)
許容せん断応力度	τa	=	0.40	(N/mm^2)
ヤング係数	Е	=	22000	(N/mm^2)

1-4 鉄筋材料

材質名	SD295
許容引張応力度	σ_{sa} = 176.0 (N/mm ²)

1-5 荷重条件

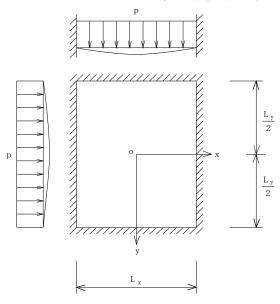
基本荷重データ

	荷重種類	荷重名称	荷重強度
p1	等分布荷重	任意荷重01	$10.00 (kN/m^2)$
p2	等変分布荷重(長辺·直角三角形)	任意荷重02	$10.00 (kN/m^2)$
р3	等変分布荷重(短辺・直角三角形)	任意荷重03	10.00 (kN/m²)

荷重組合せ

	荷重組合せ名称	割増し係数	p1	p2	рЗ
ケース1	Case1	1.00	0		
ケース2	Case2	1.00		0	
ケース3	Case3	1.00			0

1-6 配筋データ


		かぶり	鉄筋径	本数	鉄筋量
		(m)			(mm^2)
Ly方向	(上縁)	0.025	D10	4.50	320. 985
	(下縁)	0.025	D10	5.00	356. 650
Lx方向	(上縁)	0.025	D10	4.50	320. 985
	(下縁)	0.025	D10	5.00	356.650

2 断面力

2-1 計算結果

(1)p1 任意荷重01

たわみおよびモーメントは、土木学会の「長方形板の断面力とたわみ」の数値表より求める。

たわみ

	α	$\alpha \cdot (p \cdot Lx^4/D)$
		(mm)
δ	0.00220	0.000

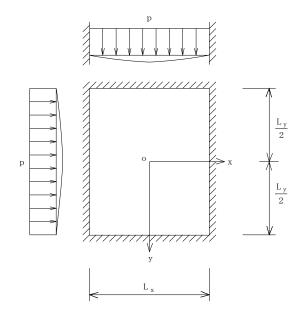
ここに、

$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)}$$

曲げモーメント(Lx方向端部)

	β x	$\beta_x \cdot p \cdot Lx^2$
		$(kN \cdot m/m)$
M_{x1}	-0. 07570	-0. 757

曲げモーメント (Lx方向中央部)


		βх	βx·p·Lx² (kN·m/m)
ſ	M _{x2}	0. 03680	0.368

曲げモーメント (Ly方向端部)

	<i>β</i> у	βy•p•Lx²
		(kN·m/m)
M_{y1}	-0.05700	-0. 570

曲げモーメント (Ly方向中央部)

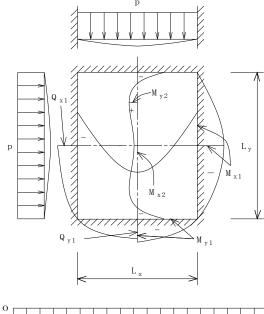
	<i>β</i> у	βy·p·Lx² (kN·m/m)
M_{y2}	0. 02030	0. 203

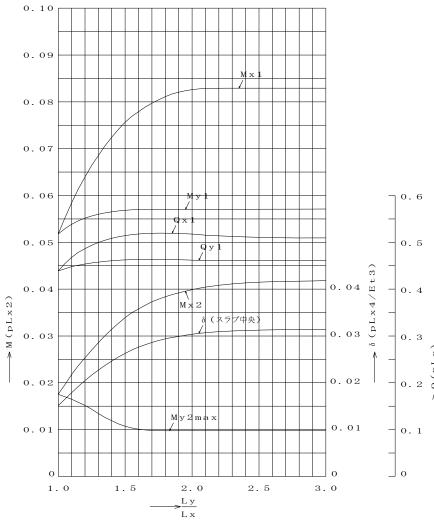
等分布荷重を受ける四辺固定板の断面力とたわみ(v=0.3)

Ly/Lx	δ	Mx1	Mx2	My1	My2
	x=0, y=0	x=Lx/2, y=0	x=0, y=0	x=0, y=Ly/2	x=0, y=0
1.00	0.00126	-0.05130	0.02310	-0.05130	0.02310
1. 10	0.00150	-0.05810	0. 02640	-0.05380	0. 02310
1. 20	0.00172	-0.06390	0. 02990	-0. 05540	0. 02280
1. 30	0.00191	-0.06870	0. 03270	-0.05630	0. 02220
1.40	0.00207	-0. 07260	0. 03490	-0.05680	0. 02120
1.50	0.00220	-0.07570	0. 03680	-0.05700	0. 02030
1.60	0.00230	-0.07800	0. 03810	-0.05710	0. 01930
1. 70	0.00238	-0.07990	0. 03920	-0.05710	0. 01820
1.80	0.00245	-0.08120	0.04010	-0.05710	0. 01740
1. 90	0. 00249	-0. 08220	0. 04070	-0.05710	0. 01650
2.00	0.00254	-0. 08290	0. 04120	-0.05710	0. 01580
∞	0.00260	-0. 08330	0. 04170	-0.05710	0. 01250

;

せん断力は、日本建築学会の「長方形板の断面力とたわみ」の図表より求める。

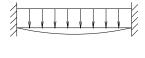

せん断力(Lx方向)

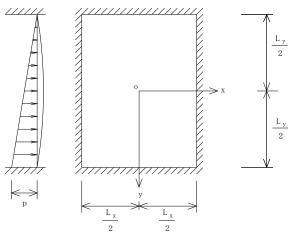

	γх	γ _x •p•Lx (kN/m)
Q_{x1}	0. 51420	5. 142

せん断力(Ly方向)

	γу	γy•p•Lx (kN/m)
Q_{y1}	0. 46240	4. 624

ô





等分布荷重時四辺固定板の断面力とたわみ ($\nu = 0$. O)

(2)p2 任意荷重02

たわみおよびモーメントは、土木学会の「長方形板の断面力とたわみ」の数値表より求める。

たわみ

	α	α • (p•Ly ⁴ /D)
		(mm)
δ	0.00022	0.000

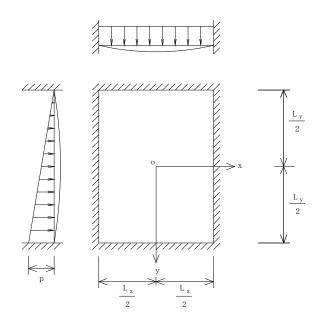
ここに、

$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)}$$

曲げモーメント (Lx方向端部)

	β x	$\beta_x \cdot p \cdot Ly^2$
		$(kN \cdot m/m)$
M_{x1}	-0.01680	-0.378

曲げモーメント (Lx方向中央部)


	βх	β _x ·p·Ly² (kN·m/m)
M_{x2}	0.00817	0. 184

曲げモーメント(Ly方向端部)

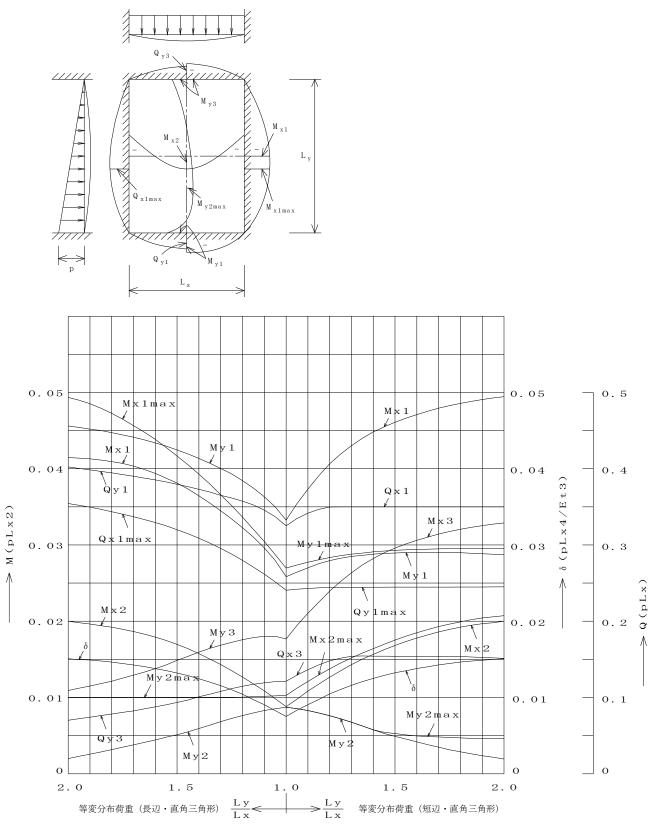
	eta y	β _y •p•Ly ²
		$(kN \cdot m/m)$
M_{y1}	-0. 01870	-0. 421
МуЗ	-0.00660	-0.149

曲げモーメント (Ly方向中央部)

	βу	βy·p·Ly² (kN·m/m)	
M_{y2}	0.00451	0. 101	

等変分布荷重を受ける四辺固定板の断面力とたわみ(v=0.3)

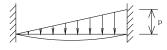
Ly/Lx	δ	Mx1	Mx2	My1	Му3	My2
	x=0, y=0	$x=\pm Lx/2, y=0$	x=0, y=0	x=0, y=Ly/2	x=0, y=-Ly/2	x=0, y=0
1.00	0.00063	-0. 02570	0. 01150	-0.03340	-0. 01790	0.01150
1.50	0.00022	-0.01680	0.00817	-0.01870	-0.00660	0.00451
2.00	0.00008	-0. 01040	0. 00515	-0. 01150	-0. 00280	0.00198

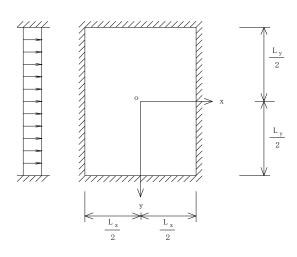

せん断力は、日本建築学会の「長方形板の断面力とたわみ」の図表より求める。

せん断力(Lx方向)

	γх	γ _x •p•Lx (kN/m)
Q_{x1max}	0. 32000	3. 200

せん断力(Ly方向)


	γу	γy•p•Lx (kN/m)
Q_{y1}	0. 37960	3. 796
Q_{y3}	0.09350	0. 935



等変分布荷重時四辺固定板の断面力とたわみ($\nu = O . O$)

(3)p3 任意荷重03

たわみおよびモーメントは、土木学会の「長方形板の断面力とたわみ」の数値表より求める。

たわみ

	α	$\alpha \cdot (p \cdot Lx^4/D)$
		(mm)
δ	0.00110	0.000

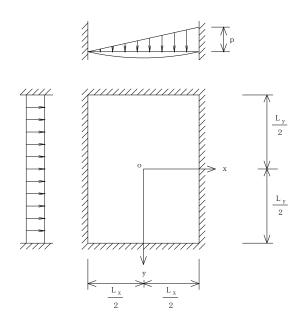
ここに、

$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)}$$

曲げモーメント(Lx方向端部)

	β x	$\beta_x \cdot p \cdot Lx^2$
		$(kN \cdot m/m)$
M _{x1}	-0.04620	-0.462
M _x 3	-0. 02950	-0. 295

曲げモーメント(Lx方向中央部)


	β _x	$\beta_x \cdot p \cdot Lx^2$
		$(kN \cdot m/m)$
M_{x2}	0. 01840	0. 184

曲げモーメント(Ly方向端部)

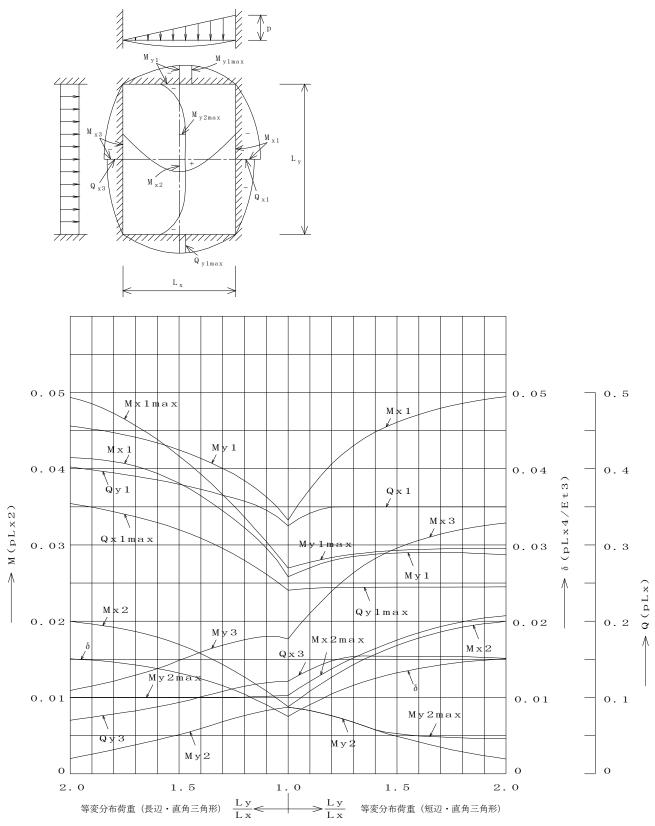
	<i>β</i> у	βy•p•Lx²
		$(kN \cdot m/m)$
M_{y1}	-0. 02850	-0. 285

曲げモーメント (Ly方向中央部)

	<i>β</i> у	βy·p·Lx² (kN·m/m)
M_{y2}	0. 01020	0. 102

等変分布荷重を受ける四辺固定板の断面力とたわみ($\nu=0.3$)

Ly/Lx	δ	Mx1	Mx3	Mx2	My1	My2
	x=0, y=0	x=Lx/2, y=0	x=-Lx/2, y=0	x=0, y=0	$x=0, y=\pm Ly/2$	x=0, y=0
1.00	0.00063	-0. 03340	-0. 01790	0. 01150	-0. 02570	0. 01150
1.50	0.00110	-0.04620	-0.02950	0. 01840	-0. 02850	0.01020
∞	0.00130	-0. 05000	-0. 03330	0. 02080	-1. 14570	0. 00630


せん断力は、日本建築学会の「長方形板の断面力とたわみ」の図表より求める。

せん断力(Lx方向)

	γх	γ _x ·p·Lx (kN/m)
Q_{x1}	0. 35000	3. 500
Q_{x3}	0. 15410	1. 541

せん断力 (Ly方向)

	γу	γy•p•Lx
		(kN/m)
Q_{y1max}	0. 24470	2. 447

等変分布荷重時四辺固定板の断面力とたわみ ($\nu = 0$. O)

3 断面照查

3-1 計算結果

(1)荷重組合せ Casel

			《Lx方向》		≪Ly⊅	京向≫
			端部	中央部	端部	中央部
曲げモーメント	M	kN•m	-0. 757	0.368	-0.570	0. 203
せん断力	Q	kN	5. 142		4. 624	
部材幅	В	mm	1000	1000	1000	1000
部材高	Н	mm	300	300	300	300
有効高	d	mm	275	275	275	275
ヤング係数比	n		15. 00	15.00	15. 00	15. 00
割増し係数	γi		1.00	1.00	1.00	1. 00
主鉄筋(引張側) 鉄筋量	As	mm^2	320. 985	356. 650	320. 985	356, 650
コンクリート圧縮応力度	σс	N/mm^2	0. 125	0.058	0.094	0.032
コンクリート許容曲げ圧縮応力度	σса	N/mm^2	7. 000	7.000	7.000	7. 000
γ i • σ ca		N/mm^2	7. 000	7.000	7.000	7. 000
判定(σc≦γi·σca)			0	0	0	0
鉄筋引張応力度	σs	N/mm^2	9. 092	3. 990	6.846	2. 201
鉄筋許容引張応力度	σ sa	N/mm^2	176.000	176.000	176.000	176.000
γ i • σ sa		N/mm^2	176.000	176.000	176.000	176.000
判定($\sigma_s \leq \gamma_i \cdot \sigma_{sa}$)			0	\bigcirc	0	0
抵抗曲げモーメント コンクリート	$M_{\rm rc}$	kN•m	-42. 549	44. 494	-42. 549	44. 494
鉄筋	M_{rs}	kN•m	-14. 653	16. 233	-14. 653	16. 233
採用値	M_r	kN•m	-14. 653	16. 233	-14. 653	16. 233
判定(Mr≥M)			0	\bigcirc	0	\circ
平均せん断応力度	τ	N/mm^2	0.019		0.017	
許容せん断応力度	τа	N/mm^2	0.400		0.400	
γ i • τ a		N/mm^2	0.400		0.400	
判定(τ≦γi•τa)			0		0	

(2)荷重組合せ Case2

			《Lx方向》		≪Ly⊅	7向≫
			端部	中央部	端部	中央部
曲げモーメント	M	kN•m	-0.378	0. 184	-0.421	0. 101
せん断力	Q	kN	3. 200		3. 796	
部材幅	В	mm	1000	1000	1000	1000
部材高	Н	mm	300	300	300	300
有効高	d	mm	275	275	275	275
ヤング係数比	n		15. 00	15.00	15. 00	15. 00
割増し係数	γi		1.00	1.00	1. 00	1. 00
主鉄筋(引張側) 鉄筋量	As	mm^2	320. 985	356.650	320. 985	356. 650
コンクリート圧縮応力度	σс	N/mm^2	0.062	0.029	0.069	0.016
コンクリート許容曲げ圧縮応力度	σса	N/mm^2	7. 000	7. 000	7.000	7. 000
γ i • σ ca		N/mm^2	7. 000	7. 000	7. 000	7. 000
判定(σ _c ≤ γ _i ·σ _{ca})			0	0	0	0
鉄筋引張応力度	σs	N/mm^2	4. 540	1. 993	5. 054	1. 100
鉄筋許容引張応力度	σ sa	N/mm^2	176.000	176.000	176.000	176.000
γ _i • σ _{sa}		N/mm^2	176. 000	176.000	176.000	176. 000
判定(σ _s ≤ γ _i · σ _{sa})			\circ	\circ	\circ	\circ
抵抗曲げモーメント コンクリート	$M_{\rm rc}$	kN•m	-42. 549	44. 494	-42. 549	44. 494
鉄筋	M_{rs}	kN•m	-14. 653	16. 233	-14. 653	16. 233
採用値	M_r	kN•m	-14. 653	16. 233	-14. 653	16. 233
判定(Mr≥M)			0	\circ	0	\circ
平均せん断応力度	τ	N/mm^2	0.012		0.014	
許容せん断応力度	τa	N/mm^2	0.400		0.400	
γ i • τ a		N/mm^2	0.400		0.400	
判定(τ≦γi·τa)			0		0	

(3) 荷重組合せ Case3

			《Lx方向》		≪Ly⊅	7向≫
			端部	中央部	端部	中央部
曲げモーメント	M	kN•m	-0.462	0. 184	-0. 285	0. 102
せん断力	Q	kN	3. 500		2. 447	
部材幅	В	mm	1000	1000	1000	1000
部材高	Н	mm	300	300	300	300
有効高	d	mm	275	275	275	275
ヤング係数比	n		15. 00	15.00	15. 00	15. 00
割増し係数	γi		1.00	1.00	1. 00	1. 00
主鉄筋(引張側) 鉄筋量	As	mm^2	320. 985	356.650	320. 985	356. 650
コンクリート圧縮応力度	σс	N/mm^2	0.076	0.029	0.047	0.016
コンクリート許容曲げ圧縮応力度	σса	N/mm^2	7. 000	7. 000	7.000	7. 000
γ i • σ ca		N/mm^2	7. 000	7. 000	7.000	7. 000
判定(σ _c ≤ γ _i ·σ _{ca})			0	0	0	0
鉄筋引張応力度	σs	N/mm^2	5. 549	1. 995	3. 423	1. 106
鉄筋許容引張応力度	σ sa	N/mm^2	176.000	176.000	176.000	176.000
γ _i • σ _{sa}		N/mm^2	176. 000	176.000	176.000	176. 000
判定(σ _s ≤ γ _i · σ _{sa})			\circ	\circ	0	\circ
抵抗曲げモーメント コンクリート	$M_{\rm rc}$	kN•m	-42. 549	44. 494	-42. 549	44. 494
鉄筋	M_{rs}	kN•m	-14. 653	16. 233	-14. 653	16. 233
採用値	M_r	kN•m	-14. 653	16. 233	-14. 653	16. 233
判定(Mr≥M)			0	0	0	\circ
平均せん断応力度	τ	N/mm^2	0.013		0.009	
許容せん断応力度	τa	N/mm^2	0.400		0.400	
γ i • τ a		N/mm^2	0.400		0.400	
判定(τ≦γi·τa)			0		0	